| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprisefaccl | Structured version Visualization version GIF version | ||
| Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018.) |
| Ref | Expression |
|---|---|
| rprisefaccl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 12966 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
| 2 | ax-resscn 11132 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | sstri 3959 | . 2 ⊢ ℝ+ ⊆ ℂ |
| 4 | 1rp 12962 | . 2 ⊢ 1 ∈ ℝ+ | |
| 5 | rpmulcl 12983 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
| 6 | rpre 12967 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 7 | nn0re 12458 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ) | |
| 8 | readdcl 11158 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 + 𝑘) ∈ ℝ) | |
| 9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ) |
| 10 | 6 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ) |
| 11 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ) |
| 12 | rpgt0 12971 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 < 𝐴) |
| 14 | nn0ge0 12474 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → 0 ≤ 𝑘) | |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝑘) |
| 16 | 10, 11, 13, 15 | addgtge0d 11759 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 < (𝐴 + 𝑘)) |
| 17 | 9, 16 | elrpd 12999 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ+) |
| 18 | 3, 4, 5, 17 | risefaccllem 15986 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 + caddc 11078 < clt 11215 ≤ cle 11216 ℕ0cn0 12449 ℝ+crp 12958 RiseFac crisefac 15978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-prod 15877 df-risefac 15979 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |