MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rprisefaccl Structured version   Visualization version   GIF version

Theorem rprisefaccl 16037
Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018.)
Assertion
Ref Expression
rprisefaccl ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+)

Proof of Theorem rprisefaccl
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 13014 . . 3 + ⊆ ℝ
2 ax-resscn 11184 . . 3 ℝ ⊆ ℂ
31, 2sstri 3968 . 2 + ⊆ ℂ
4 1rp 13010 . 2 1 ∈ ℝ+
5 rpmulcl 13030 . 2 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
6 rpre 13015 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
7 nn0re 12508 . . . 4 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
8 readdcl 11210 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 + 𝑘) ∈ ℝ)
96, 7, 8syl2an 596 . . 3 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ)
106adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
117adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
12 rpgt0 13019 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 𝐴)
1312adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 0 < 𝐴)
14 nn0ge0 12524 . . . . 5 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
1514adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
1610, 11, 13, 15addgtge0d 11809 . . 3 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 0 < (𝐴 + 𝑘))
179, 16elrpd 13046 . 2 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ+)
183, 4, 5, 17risefaccllem 16027 1 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5119  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127   + caddc 11130   < clt 11267  cle 11268  0cn0 12499  +crp 13006   RiseFac crisefac 16019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-prod 15918  df-risefac 16020
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator