MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rprisefaccl Structured version   Visualization version   GIF version

Theorem rprisefaccl 15367
Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018.)
Assertion
Ref Expression
rprisefaccl ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+)

Proof of Theorem rprisefaccl
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 12386 . . 3 + ⊆ ℝ
2 ax-resscn 10583 . . 3 ℝ ⊆ ℂ
31, 2sstri 3980 . 2 + ⊆ ℂ
4 1rp 12383 . 2 1 ∈ ℝ+
5 rpmulcl 12402 . 2 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
6 rpre 12387 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
7 nn0re 11895 . . . 4 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
8 readdcl 10609 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 + 𝑘) ∈ ℝ)
96, 7, 8syl2an 595 . . 3 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ)
106adantr 481 . . . 4 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
117adantl 482 . . . 4 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
12 rpgt0 12391 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 𝐴)
1312adantr 481 . . . 4 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 0 < 𝐴)
14 nn0ge0 11911 . . . . 5 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
1514adantl 482 . . . 4 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
1610, 11, 13, 15addgtge0d 11203 . . 3 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → 0 < (𝐴 + 𝑘))
179, 16elrpd 12418 . 2 ((𝐴 ∈ ℝ+𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ+)
183, 4, 5, 17risefaccllem 15357 1 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2107   class class class wbr 5063  (class class class)co 7148  cc 10524  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  cle 10665  0cn0 11886  +crp 12379   RiseFac crisefac 15349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-prod 15250  df-risefac 15350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator