![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rprisefaccl | Structured version Visualization version GIF version |
Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018.) |
Ref | Expression |
---|---|
rprisefaccl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12119 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
2 | ax-resscn 10309 | . . 3 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3836 | . 2 ⊢ ℝ+ ⊆ ℂ |
4 | 1rp 12116 | . 2 ⊢ 1 ∈ ℝ+ | |
5 | rpmulcl 12137 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
6 | rpre 12120 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
7 | nn0re 11628 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ) | |
8 | readdcl 10335 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 + 𝑘) ∈ ℝ) | |
9 | 6, 7, 8 | syl2an 591 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ) |
10 | 6 | adantr 474 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ) |
11 | 7 | adantl 475 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ) |
12 | rpgt0 12126 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
13 | 12 | adantr 474 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 < 𝐴) |
14 | nn0ge0 11645 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → 0 ≤ 𝑘) | |
15 | 14 | adantl 475 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝑘) |
16 | 10, 11, 13, 15 | addgtge0d 10926 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → 0 < (𝐴 + 𝑘)) |
17 | 9, 16 | elrpd 12153 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ ℝ+) |
18 | 3, 4, 5, 17 | risefaccllem 15116 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 class class class wbr 4873 (class class class)co 6905 ℂcc 10250 ℝcr 10251 0cc0 10252 + caddc 10255 < clt 10391 ≤ cle 10392 ℕ0cn0 11618 ℝ+crp 12112 RiseFac crisefac 15108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-sup 8617 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-z 11705 df-uz 11969 df-rp 12113 df-fz 12620 df-fzo 12761 df-seq 13096 df-exp 13155 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-clim 14596 df-prod 15009 df-risefac 15109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |