Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chtrpcl | Structured version Visualization version GIF version |
Description: Closure of the Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
chtrpcl | ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chtcl 26015 | . . 3 ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ) |
3 | 0red 10861 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 0 ∈ ℝ) | |
4 | 2re 11929 | . . . . 5 ⊢ 2 ∈ ℝ | |
5 | 1lt2 12026 | . . . . 5 ⊢ 1 < 2 | |
6 | rplogcl 25516 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+) | |
7 | 4, 5, 6 | mp2an 692 | . . . 4 ⊢ (log‘2) ∈ ℝ+ |
8 | rpre 12619 | . . . 4 ⊢ ((log‘2) ∈ ℝ+ → (log‘2) ∈ ℝ) | |
9 | 7, 8 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (log‘2) ∈ ℝ) |
10 | rpgt0 12623 | . . . 4 ⊢ ((log‘2) ∈ ℝ+ → 0 < (log‘2)) | |
11 | 7, 10 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 0 < (log‘2)) |
12 | cht2 26078 | . . . 4 ⊢ (θ‘2) = (log‘2) | |
13 | chtwordi 26062 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (θ‘2) ≤ (θ‘𝐴)) | |
14 | 4, 13 | mp3an1 1450 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (θ‘2) ≤ (θ‘𝐴)) |
15 | 12, 14 | eqbrtrrid 5104 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (log‘2) ≤ (θ‘𝐴)) |
16 | 3, 9, 2, 11, 15 | ltletrd 11017 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 0 < (θ‘𝐴)) |
17 | 2, 16 | elrpd 12650 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 class class class wbr 5068 ‘cfv 6398 ℝcr 10753 0cc0 10754 1c1 10755 < clt 10892 ≤ cle 10893 2c2 11910 ℝ+crp 12611 logclog 25467 θccht 25997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-inf2 9281 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 ax-addf 10833 ax-mulf 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-2o 8224 df-er 8412 df-map 8531 df-pm 8532 df-ixp 8600 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-fi 9052 df-sup 9083 df-inf 9084 df-oi 9151 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-q 12570 df-rp 12612 df-xneg 12729 df-xadd 12730 df-xmul 12731 df-ioo 12964 df-ioc 12965 df-ico 12966 df-icc 12967 df-fz 13121 df-fzo 13264 df-fl 13392 df-mod 13468 df-seq 13600 df-exp 13661 df-fac 13865 df-bc 13894 df-hash 13922 df-shft 14655 df-cj 14687 df-re 14688 df-im 14689 df-sqrt 14823 df-abs 14824 df-limsup 15057 df-clim 15074 df-rlim 15075 df-sum 15275 df-ef 15654 df-sin 15656 df-cos 15657 df-pi 15659 df-dvds 15841 df-prm 16254 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-starv 16842 df-sca 16843 df-vsca 16844 df-ip 16845 df-tset 16846 df-ple 16847 df-ds 16849 df-unif 16850 df-hom 16851 df-cco 16852 df-rest 16952 df-topn 16953 df-0g 16971 df-gsum 16972 df-topgen 16973 df-pt 16974 df-prds 16977 df-xrs 17032 df-qtop 17037 df-imas 17038 df-xps 17040 df-mre 17114 df-mrc 17115 df-acs 17117 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-submnd 18244 df-mulg 18514 df-cntz 18736 df-cmn 19197 df-psmet 20380 df-xmet 20381 df-met 20382 df-bl 20383 df-mopn 20384 df-fbas 20385 df-fg 20386 df-cnfld 20389 df-top 21815 df-topon 21832 df-topsp 21854 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-nei 22019 df-lp 22057 df-perf 22058 df-cn 22148 df-cnp 22149 df-haus 22236 df-tx 22483 df-hmeo 22676 df-fil 22767 df-fm 22859 df-flim 22860 df-flf 22861 df-xms 23242 df-ms 23243 df-tms 23244 df-cncf 23799 df-limc 24787 df-dv 24788 df-log 25469 df-cht 26003 |
This theorem is referenced by: chprpcl 26112 chteq0 26114 chebbnd2 26382 chto1lb 26383 chpchtlim 26384 chpo1ub 26385 pnt2 26518 pnt 26519 |
Copyright terms: Public domain | W3C validator |