MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanbndlem Structured version   Visualization version   GIF version

Theorem atanbndlem 24873
Description: Lemma for atanbnd 24874. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atanbndlem (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem atanbndlem
StepHypRef Expression
1 rpre 12042 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 atanrecl 24859 . . 3 (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ)
31, 2syl 17 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ ℝ)
4 picn 24432 . . . 4 π ∈ ℂ
5 2cn 11293 . . . 4 2 ∈ ℂ
6 2ne0 11315 . . . 4 2 ≠ 0
7 divneg 10921 . . . 4 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
84, 5, 6, 7mp3an 1572 . . 3 -(π / 2) = (-π / 2)
9 ax-1cn 10196 . . . . . . . . . . . 12 1 ∈ ℂ
10 ax-icn 10197 . . . . . . . . . . . . 13 i ∈ ℂ
111recnd 10270 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
12 mulcl 10222 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1310, 11, 12sylancr 575 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · 𝐴) ∈ ℂ)
14 addcl 10220 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
159, 13, 14sylancr 575 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ∈ ℂ)
16 atanre 24833 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan)
171, 16syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ dom arctan)
18 atandm2 24825 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
1917, 18sylib 208 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2019simp3d 1138 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ≠ 0)
2115, 20logcld 24538 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 + (i · 𝐴))) ∈ ℂ)
22 subcl 10482 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
239, 13, 22sylancr 575 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ∈ ℂ)
2419simp2d 1137 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ≠ 0)
2523, 24logcld 24538 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2621, 25subcld 10594 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
27 imre 14056 . . . . . . . . 9 (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
2826, 27syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
29 atanval 24832 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3017, 29syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3130oveq2d 6809 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3210, 5, 6divcan2i 10970 . . . . . . . . . . . . . 14 (2 · (i / 2)) = i
3332oveq1i 6803 . . . . . . . . . . . . 13 ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
34 2re 11292 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → 2 ∈ ℝ)
3635recnd 10270 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 2 ∈ ℂ)
37 halfcl 11459 . . . . . . . . . . . . . . 15 (i ∈ ℂ → (i / 2) ∈ ℂ)
3810, 37mp1i 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (i / 2) ∈ ℂ)
3925, 21subcld 10594 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
4036, 38, 39mulassd 10265 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4133, 40syl5eqr 2819 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4231, 41eqtr4d 2808 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4321, 25negsubdi2d 10610 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
4443oveq2d 6809 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4542, 44eqtr4d 2808 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
46 mulneg12 10670 . . . . . . . . . . 11 ((i ∈ ℂ ∧ ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ) → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4710, 26, 46sylancr 575 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4845, 47eqtr4d 2808 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4948fveq2d 6336 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
50 remulcl 10223 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → (2 · (arctan‘𝐴)) ∈ ℝ)
5134, 3, 50sylancr 575 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ ℝ)
5251rered 14172 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (2 · (arctan‘𝐴)))
5328, 49, 523eqtr2rd 2812 . . . . . . 7 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
54 rpgt0 12047 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 < 𝐴)
551rered 14172 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (ℜ‘𝐴) = 𝐴)
5654, 55breqtrrd 4814 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < (ℜ‘𝐴))
57 atanlogsublem 24863 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5817, 56, 57syl2anc 573 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5953, 58eqeltrd 2850 . . . . . 6 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ (-π(,)π))
60 eliooord 12438 . . . . . 6 ((2 · (arctan‘𝐴)) ∈ (-π(,)π) → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6159, 60syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6261simpld 482 . . . 4 (𝐴 ∈ ℝ+ → -π < (2 · (arctan‘𝐴)))
63 pire 24431 . . . . . . 7 π ∈ ℝ
6463renegcli 10544 . . . . . 6 -π ∈ ℝ
6564a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → -π ∈ ℝ)
66 2pos 11314 . . . . . 6 0 < 2
6766a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 2)
68 ltdivmul 11100 . . . . 5 ((-π ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
6965, 3, 35, 67, 68syl112anc 1480 . . . 4 (𝐴 ∈ ℝ+ → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
7062, 69mpbird 247 . . 3 (𝐴 ∈ ℝ+ → (-π / 2) < (arctan‘𝐴))
718, 70syl5eqbr 4821 . 2 (𝐴 ∈ ℝ+ → -(π / 2) < (arctan‘𝐴))
7261simprd 483 . . 3 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) < π)
7363a1i 11 . . . 4 (𝐴 ∈ ℝ+ → π ∈ ℝ)
74 ltmuldiv2 11099 . . . 4 (((arctan‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
753, 73, 35, 67, 74syl112anc 1480 . . 3 (𝐴 ∈ ℝ+ → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
7672, 75mpbid 222 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) < (π / 2))
77 halfpire 24437 . . . . 5 (π / 2) ∈ ℝ
7877renegcli 10544 . . . 4 -(π / 2) ∈ ℝ
7978rexri 10299 . . 3 -(π / 2) ∈ ℝ*
8077rexri 10299 . . 3 (π / 2) ∈ ℝ*
81 elioo2 12421 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2))))
8279, 80, 81mp2an 672 . 2 ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2)))
833, 71, 76, 82syl3anbrc 1428 1 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  dom cdm 5249  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139  ici 10140   + caddc 10141   · cmul 10143  *cxr 10275   < clt 10276  cmin 10468  -cneg 10469   / cdiv 10886  2c2 11272  +crp 12035  (,)cioo 12380  cre 14045  cim 14046  πcpi 15003  logclog 24522  arctancatan 24812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-tan 15008  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-atan 24815
This theorem is referenced by:  atanbnd  24874
  Copyright terms: Public domain W3C validator