MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanbndlem Structured version   Visualization version   GIF version

Theorem atanbndlem 25980
Description: Lemma for atanbnd 25981. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atanbndlem (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem atanbndlem
StepHypRef Expression
1 rpre 12667 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 atanrecl 25966 . . 3 (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ)
31, 2syl 17 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ ℝ)
4 picn 25521 . . . 4 π ∈ ℂ
5 2cn 11978 . . . 4 2 ∈ ℂ
6 2ne0 12007 . . . 4 2 ≠ 0
7 divneg 11597 . . . 4 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
84, 5, 6, 7mp3an 1459 . . 3 -(π / 2) = (-π / 2)
9 ax-1cn 10860 . . . . . . . . . . . 12 1 ∈ ℂ
10 ax-icn 10861 . . . . . . . . . . . . 13 i ∈ ℂ
111recnd 10934 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
12 mulcl 10886 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1310, 11, 12sylancr 586 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · 𝐴) ∈ ℂ)
14 addcl 10884 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
159, 13, 14sylancr 586 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ∈ ℂ)
16 atanre 25940 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan)
171, 16syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ dom arctan)
18 atandm2 25932 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
1917, 18sylib 217 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2019simp3d 1142 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ≠ 0)
2115, 20logcld 25631 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 + (i · 𝐴))) ∈ ℂ)
22 subcl 11150 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
239, 13, 22sylancr 586 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ∈ ℂ)
2419simp2d 1141 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ≠ 0)
2523, 24logcld 25631 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2621, 25subcld 11262 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
27 imre 14747 . . . . . . . . 9 (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
2826, 27syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
29 atanval 25939 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3017, 29syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3130oveq2d 7271 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3210, 5, 6divcan2i 11648 . . . . . . . . . . . . . 14 (2 · (i / 2)) = i
3332oveq1i 7265 . . . . . . . . . . . . 13 ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
34 2re 11977 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → 2 ∈ ℝ)
3635recnd 10934 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 2 ∈ ℂ)
37 halfcl 12128 . . . . . . . . . . . . . . 15 (i ∈ ℂ → (i / 2) ∈ ℂ)
3810, 37mp1i 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (i / 2) ∈ ℂ)
3925, 21subcld 11262 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
4036, 38, 39mulassd 10929 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4133, 40eqtr3id 2793 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4231, 41eqtr4d 2781 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4321, 25negsubdi2d 11278 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
4443oveq2d 7271 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4542, 44eqtr4d 2781 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
46 mulneg12 11343 . . . . . . . . . . 11 ((i ∈ ℂ ∧ ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ) → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4710, 26, 46sylancr 586 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4845, 47eqtr4d 2781 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4948fveq2d 6760 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
50 remulcl 10887 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → (2 · (arctan‘𝐴)) ∈ ℝ)
5134, 3, 50sylancr 586 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ ℝ)
5251rered 14863 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (2 · (arctan‘𝐴)))
5328, 49, 523eqtr2rd 2785 . . . . . . 7 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
54 rpgt0 12671 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 < 𝐴)
551rered 14863 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (ℜ‘𝐴) = 𝐴)
5654, 55breqtrrd 5098 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < (ℜ‘𝐴))
57 atanlogsublem 25970 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5817, 56, 57syl2anc 583 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5953, 58eqeltrd 2839 . . . . . 6 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ (-π(,)π))
60 eliooord 13067 . . . . . 6 ((2 · (arctan‘𝐴)) ∈ (-π(,)π) → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6159, 60syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6261simpld 494 . . . 4 (𝐴 ∈ ℝ+ → -π < (2 · (arctan‘𝐴)))
63 pire 25520 . . . . . . 7 π ∈ ℝ
6463renegcli 11212 . . . . . 6 -π ∈ ℝ
6564a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → -π ∈ ℝ)
66 2pos 12006 . . . . . 6 0 < 2
6766a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 2)
68 ltdivmul 11780 . . . . 5 ((-π ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
6965, 3, 35, 67, 68syl112anc 1372 . . . 4 (𝐴 ∈ ℝ+ → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
7062, 69mpbird 256 . . 3 (𝐴 ∈ ℝ+ → (-π / 2) < (arctan‘𝐴))
718, 70eqbrtrid 5105 . 2 (𝐴 ∈ ℝ+ → -(π / 2) < (arctan‘𝐴))
7261simprd 495 . . 3 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) < π)
7363a1i 11 . . . 4 (𝐴 ∈ ℝ+ → π ∈ ℝ)
74 ltmuldiv2 11779 . . . 4 (((arctan‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
753, 73, 35, 67, 74syl112anc 1372 . . 3 (𝐴 ∈ ℝ+ → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
7672, 75mpbid 231 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) < (π / 2))
77 halfpire 25526 . . . . 5 (π / 2) ∈ ℝ
7877renegcli 11212 . . . 4 -(π / 2) ∈ ℝ
7978rexri 10964 . . 3 -(π / 2) ∈ ℝ*
8077rexri 10964 . . 3 (π / 2) ∈ ℝ*
81 elioo2 13049 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2))))
8279, 80, 81mp2an 688 . 2 ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2)))
833, 71, 76, 82syl3anbrc 1341 1 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  +crp 12659  (,)cioo 13008  cre 14736  cim 14737  πcpi 15704  logclog 25615  arctancatan 25919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-atan 25922
This theorem is referenced by:  atanbnd  25981
  Copyright terms: Public domain W3C validator