MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanbndlem Structured version   Visualization version   GIF version

Theorem atanbndlem 25430
Description: Lemma for atanbnd 25431. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atanbndlem (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem atanbndlem
StepHypRef Expression
1 rpre 12385 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 atanrecl 25416 . . 3 (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ)
31, 2syl 17 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ ℝ)
4 picn 24972 . . . 4 π ∈ ℂ
5 2cn 11700 . . . 4 2 ∈ ℂ
6 2ne0 11729 . . . 4 2 ≠ 0
7 divneg 11320 . . . 4 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
84, 5, 6, 7mp3an 1452 . . 3 -(π / 2) = (-π / 2)
9 ax-1cn 10583 . . . . . . . . . . . 12 1 ∈ ℂ
10 ax-icn 10584 . . . . . . . . . . . . 13 i ∈ ℂ
111recnd 10657 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
12 mulcl 10609 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1310, 11, 12sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · 𝐴) ∈ ℂ)
14 addcl 10607 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
159, 13, 14sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ∈ ℂ)
16 atanre 25390 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan)
171, 16syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ dom arctan)
18 atandm2 25382 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
1917, 18sylib 219 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2019simp3d 1136 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ≠ 0)
2115, 20logcld 25081 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 + (i · 𝐴))) ∈ ℂ)
22 subcl 10873 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
239, 13, 22sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ∈ ℂ)
2419simp2d 1135 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ≠ 0)
2523, 24logcld 25081 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2621, 25subcld 10985 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
27 imre 14455 . . . . . . . . 9 (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
2826, 27syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
29 atanval 25389 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3017, 29syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3130oveq2d 7161 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3210, 5, 6divcan2i 11371 . . . . . . . . . . . . . 14 (2 · (i / 2)) = i
3332oveq1i 7155 . . . . . . . . . . . . 13 ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
34 2re 11699 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → 2 ∈ ℝ)
3635recnd 10657 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 2 ∈ ℂ)
37 halfcl 11850 . . . . . . . . . . . . . . 15 (i ∈ ℂ → (i / 2) ∈ ℂ)
3810, 37mp1i 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (i / 2) ∈ ℂ)
3925, 21subcld 10985 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
4036, 38, 39mulassd 10652 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4133, 40syl5eqr 2867 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4231, 41eqtr4d 2856 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4321, 25negsubdi2d 11001 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
4443oveq2d 7161 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4542, 44eqtr4d 2856 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
46 mulneg12 11066 . . . . . . . . . . 11 ((i ∈ ℂ ∧ ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ) → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4710, 26, 46sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4845, 47eqtr4d 2856 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4948fveq2d 6667 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
50 remulcl 10610 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → (2 · (arctan‘𝐴)) ∈ ℝ)
5134, 3, 50sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ ℝ)
5251rered 14571 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (2 · (arctan‘𝐴)))
5328, 49, 523eqtr2rd 2860 . . . . . . 7 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
54 rpgt0 12389 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 < 𝐴)
551rered 14571 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (ℜ‘𝐴) = 𝐴)
5654, 55breqtrrd 5085 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < (ℜ‘𝐴))
57 atanlogsublem 25420 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5817, 56, 57syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5953, 58eqeltrd 2910 . . . . . 6 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ (-π(,)π))
60 eliooord 12784 . . . . . 6 ((2 · (arctan‘𝐴)) ∈ (-π(,)π) → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6159, 60syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6261simpld 495 . . . 4 (𝐴 ∈ ℝ+ → -π < (2 · (arctan‘𝐴)))
63 pire 24971 . . . . . . 7 π ∈ ℝ
6463renegcli 10935 . . . . . 6 -π ∈ ℝ
6564a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → -π ∈ ℝ)
66 2pos 11728 . . . . . 6 0 < 2
6766a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 2)
68 ltdivmul 11503 . . . . 5 ((-π ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
6965, 3, 35, 67, 68syl112anc 1366 . . . 4 (𝐴 ∈ ℝ+ → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
7062, 69mpbird 258 . . 3 (𝐴 ∈ ℝ+ → (-π / 2) < (arctan‘𝐴))
718, 70eqbrtrid 5092 . 2 (𝐴 ∈ ℝ+ → -(π / 2) < (arctan‘𝐴))
7261simprd 496 . . 3 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) < π)
7363a1i 11 . . . 4 (𝐴 ∈ ℝ+ → π ∈ ℝ)
74 ltmuldiv2 11502 . . . 4 (((arctan‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
753, 73, 35, 67, 74syl112anc 1366 . . 3 (𝐴 ∈ ℝ+ → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
7672, 75mpbid 233 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) < (π / 2))
77 halfpire 24977 . . . . 5 (π / 2) ∈ ℝ
7877renegcli 10935 . . . 4 -(π / 2) ∈ ℝ
7978rexri 10687 . . 3 -(π / 2) ∈ ℝ*
8077rexri 10687 . . 3 (π / 2) ∈ ℝ*
81 elioo2 12767 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2))))
8279, 80, 81mp2an 688 . 2 ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2)))
833, 71, 76, 82syl3anbrc 1335 1 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  dom cdm 5548  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526  ici 10527   + caddc 10528   · cmul 10530  *cxr 10662   < clt 10663  cmin 10858  -cneg 10859   / cdiv 11285  2c2 11680  +crp 12377  (,)cioo 12726  cre 14444  cim 14445  πcpi 15408  logclog 25065  arctancatan 25369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-tan 15413  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067  df-atan 25372
This theorem is referenced by:  atanbnd  25431
  Copyright terms: Public domain W3C validator