MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanbndlem Structured version   Visualization version   GIF version

Theorem atanbndlem 26851
Description: Lemma for atanbnd 26852. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atanbndlem (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem atanbndlem
StepHypRef Expression
1 rpre 12920 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 atanrecl 26837 . . 3 (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ)
31, 2syl 17 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ ℝ)
4 picn 26383 . . . 4 π ∈ ℂ
5 2cn 12221 . . . 4 2 ∈ ℂ
6 2ne0 12250 . . . 4 2 ≠ 0
7 divneg 11834 . . . 4 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
84, 5, 6, 7mp3an 1463 . . 3 -(π / 2) = (-π / 2)
9 ax-1cn 11086 . . . . . . . . . . . 12 1 ∈ ℂ
10 ax-icn 11087 . . . . . . . . . . . . 13 i ∈ ℂ
111recnd 11162 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
12 mulcl 11112 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1310, 11, 12sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · 𝐴) ∈ ℂ)
14 addcl 11110 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
159, 13, 14sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ∈ ℂ)
16 atanre 26811 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan)
171, 16syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ dom arctan)
18 atandm2 26803 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
1917, 18sylib 218 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2019simp3d 1144 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ≠ 0)
2115, 20logcld 26495 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 + (i · 𝐴))) ∈ ℂ)
22 subcl 11380 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
239, 13, 22sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ∈ ℂ)
2419simp2d 1143 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ≠ 0)
2523, 24logcld 26495 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2621, 25subcld 11493 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
27 imre 15033 . . . . . . . . 9 (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
2826, 27syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
29 atanval 26810 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3017, 29syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3130oveq2d 7369 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3210, 5, 6divcan2i 11885 . . . . . . . . . . . . . 14 (2 · (i / 2)) = i
3332oveq1i 7363 . . . . . . . . . . . . 13 ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
34 2re 12220 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → 2 ∈ ℝ)
3635recnd 11162 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 2 ∈ ℂ)
37 halfcl 12368 . . . . . . . . . . . . . . 15 (i ∈ ℂ → (i / 2) ∈ ℂ)
3810, 37mp1i 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (i / 2) ∈ ℂ)
3925, 21subcld 11493 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
4036, 38, 39mulassd 11157 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4133, 40eqtr3id 2778 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4231, 41eqtr4d 2767 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4321, 25negsubdi2d 11509 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
4443oveq2d 7369 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4542, 44eqtr4d 2767 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
46 mulneg12 11576 . . . . . . . . . . 11 ((i ∈ ℂ ∧ ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ) → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4710, 26, 46sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4845, 47eqtr4d 2767 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4948fveq2d 6830 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
50 remulcl 11113 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → (2 · (arctan‘𝐴)) ∈ ℝ)
5134, 3, 50sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ ℝ)
5251rered 15149 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (2 · (arctan‘𝐴)))
5328, 49, 523eqtr2rd 2771 . . . . . . 7 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
54 rpgt0 12924 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 < 𝐴)
551rered 15149 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (ℜ‘𝐴) = 𝐴)
5654, 55breqtrrd 5123 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < (ℜ‘𝐴))
57 atanlogsublem 26841 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5817, 56, 57syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5953, 58eqeltrd 2828 . . . . . 6 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ (-π(,)π))
60 eliooord 13326 . . . . . 6 ((2 · (arctan‘𝐴)) ∈ (-π(,)π) → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6159, 60syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6261simpld 494 . . . 4 (𝐴 ∈ ℝ+ → -π < (2 · (arctan‘𝐴)))
63 pire 26382 . . . . . . 7 π ∈ ℝ
6463renegcli 11443 . . . . . 6 -π ∈ ℝ
6564a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → -π ∈ ℝ)
66 2pos 12249 . . . . . 6 0 < 2
6766a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 2)
68 ltdivmul 12018 . . . . 5 ((-π ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
6965, 3, 35, 67, 68syl112anc 1376 . . . 4 (𝐴 ∈ ℝ+ → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
7062, 69mpbird 257 . . 3 (𝐴 ∈ ℝ+ → (-π / 2) < (arctan‘𝐴))
718, 70eqbrtrid 5130 . 2 (𝐴 ∈ ℝ+ → -(π / 2) < (arctan‘𝐴))
7261simprd 495 . . 3 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) < π)
7363a1i 11 . . . 4 (𝐴 ∈ ℝ+ → π ∈ ℝ)
74 ltmuldiv2 12017 . . . 4 (((arctan‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
753, 73, 35, 67, 74syl112anc 1376 . . 3 (𝐴 ∈ ℝ+ → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
7672, 75mpbid 232 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) < (π / 2))
77 halfpire 26389 . . . . 5 (π / 2) ∈ ℝ
7877renegcli 11443 . . . 4 -(π / 2) ∈ ℝ
7978rexri 11192 . . 3 -(π / 2) ∈ ℝ*
8077rexri 11192 . . 3 (π / 2) ∈ ℝ*
81 elioo2 13307 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2))))
8279, 80, 81mp2an 692 . 2 ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2)))
833, 71, 76, 82syl3anbrc 1344 1 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  dom cdm 5623  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  +crp 12911  (,)cioo 13266  cre 15022  cim 15023  πcpi 15991  logclog 26479  arctancatan 26790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-atan 26793
This theorem is referenced by:  atanbnd  26852
  Copyright terms: Public domain W3C validator