MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanbndlem Structured version   Visualization version   GIF version

Theorem atanbndlem 24943
Description: Lemma for atanbnd 24944. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atanbndlem (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem atanbndlem
StepHypRef Expression
1 rpre 12036 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 atanrecl 24929 . . 3 (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ)
31, 2syl 17 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ ℝ)
4 picn 24503 . . . 4 π ∈ ℂ
5 2cn 11347 . . . 4 2 ∈ ℂ
6 2ne0 11383 . . . 4 2 ≠ 0
7 divneg 10973 . . . 4 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
84, 5, 6, 7mp3an 1585 . . 3 -(π / 2) = (-π / 2)
9 ax-1cn 10247 . . . . . . . . . . . 12 1 ∈ ℂ
10 ax-icn 10248 . . . . . . . . . . . . 13 i ∈ ℂ
111recnd 10322 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
12 mulcl 10273 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1310, 11, 12sylancr 581 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · 𝐴) ∈ ℂ)
14 addcl 10271 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
159, 13, 14sylancr 581 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ∈ ℂ)
16 atanre 24903 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan)
171, 16syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ dom arctan)
18 atandm2 24895 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
1917, 18sylib 209 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2019simp3d 1174 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 + (i · 𝐴)) ≠ 0)
2115, 20logcld 24608 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 + (i · 𝐴))) ∈ ℂ)
22 subcl 10534 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
239, 13, 22sylancr 581 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ∈ ℂ)
2419simp2d 1173 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1 − (i · 𝐴)) ≠ 0)
2523, 24logcld 24608 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2621, 25subcld 10646 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
27 imre 14135 . . . . . . . . 9 (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
2826, 27syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
29 atanval 24902 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3017, 29syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3130oveq2d 6858 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3210, 5, 6divcan2i 11022 . . . . . . . . . . . . . 14 (2 · (i / 2)) = i
3332oveq1i 6852 . . . . . . . . . . . . 13 ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
34 2re 11346 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → 2 ∈ ℝ)
3635recnd 10322 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 2 ∈ ℂ)
37 halfcl 11503 . . . . . . . . . . . . . . 15 (i ∈ ℂ → (i / 2) ∈ ℂ)
3810, 37mp1i 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (i / 2) ∈ ℂ)
3925, 21subcld 10646 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
4036, 38, 39mulassd 10317 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → ((2 · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4133, 40syl5eqr 2813 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (2 · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4231, 41eqtr4d 2802 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4321, 25negsubdi2d 10662 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
4443oveq2d 6858 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4542, 44eqtr4d 2802 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
46 mulneg12 10722 . . . . . . . . . . 11 ((i ∈ ℂ ∧ ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ) → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4710, 26, 46sylancr 581 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (i · -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4845, 47eqtr4d 2802 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
4948fveq2d 6379 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (ℜ‘(-i · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))))
50 remulcl 10274 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ) → (2 · (arctan‘𝐴)) ∈ ℝ)
5134, 3, 50sylancr 581 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ ℝ)
5251rered 14251 . . . . . . . 8 (𝐴 ∈ ℝ+ → (ℜ‘(2 · (arctan‘𝐴))) = (2 · (arctan‘𝐴)))
5328, 49, 523eqtr2rd 2806 . . . . . . 7 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) = (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
54 rpgt0 12042 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 < 𝐴)
551rered 14251 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (ℜ‘𝐴) = 𝐴)
5654, 55breqtrrd 4837 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < (ℜ‘𝐴))
57 atanlogsublem 24933 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5817, 56, 57syl2anc 579 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
5953, 58eqeltrd 2844 . . . . . 6 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) ∈ (-π(,)π))
60 eliooord 12435 . . . . . 6 ((2 · (arctan‘𝐴)) ∈ (-π(,)π) → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6159, 60syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (-π < (2 · (arctan‘𝐴)) ∧ (2 · (arctan‘𝐴)) < π))
6261simpld 488 . . . 4 (𝐴 ∈ ℝ+ → -π < (2 · (arctan‘𝐴)))
63 pire 24502 . . . . . . 7 π ∈ ℝ
6463renegcli 10596 . . . . . 6 -π ∈ ℝ
6564a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → -π ∈ ℝ)
66 2pos 11382 . . . . . 6 0 < 2
6766a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 2)
68 ltdivmul 11152 . . . . 5 ((-π ∈ ℝ ∧ (arctan‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
6965, 3, 35, 67, 68syl112anc 1493 . . . 4 (𝐴 ∈ ℝ+ → ((-π / 2) < (arctan‘𝐴) ↔ -π < (2 · (arctan‘𝐴))))
7062, 69mpbird 248 . . 3 (𝐴 ∈ ℝ+ → (-π / 2) < (arctan‘𝐴))
718, 70syl5eqbr 4844 . 2 (𝐴 ∈ ℝ+ → -(π / 2) < (arctan‘𝐴))
7261simprd 489 . . 3 (𝐴 ∈ ℝ+ → (2 · (arctan‘𝐴)) < π)
7363a1i 11 . . . 4 (𝐴 ∈ ℝ+ → π ∈ ℝ)
74 ltmuldiv2 11151 . . . 4 (((arctan‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
753, 73, 35, 67, 74syl112anc 1493 . . 3 (𝐴 ∈ ℝ+ → ((2 · (arctan‘𝐴)) < π ↔ (arctan‘𝐴) < (π / 2)))
7672, 75mpbid 223 . 2 (𝐴 ∈ ℝ+ → (arctan‘𝐴) < (π / 2))
77 halfpire 24508 . . . . 5 (π / 2) ∈ ℝ
7877renegcli 10596 . . . 4 -(π / 2) ∈ ℝ
7978rexri 10351 . . 3 -(π / 2) ∈ ℝ*
8077rexri 10351 . . 3 (π / 2) ∈ ℝ*
81 elioo2 12418 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2))))
8279, 80, 81mp2an 683 . 2 ((arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((arctan‘𝐴) ∈ ℝ ∧ -(π / 2) < (arctan‘𝐴) ∧ (arctan‘𝐴) < (π / 2)))
833, 71, 76, 82syl3anbrc 1443 1 (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4809  dom cdm 5277  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190  ici 10191   + caddc 10192   · cmul 10194  *cxr 10327   < clt 10328  cmin 10520  -cneg 10521   / cdiv 10938  2c2 11327  +crp 12028  (,)cioo 12377  cre 14124  cim 14125  πcpi 15081  logclog 24592  arctancatan 24882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082  df-sin 15084  df-cos 15085  df-tan 15086  df-pi 15087  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-atan 24885
This theorem is referenced by:  atanbnd  24944
  Copyright terms: Public domain W3C validator