MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftval4 Structured version   Visualization version   GIF version

Theorem shftval4 14477
Description: Value of a sequence shifted by -𝐴. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftval4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))

Proof of Theorem shftval4
StepHypRef Expression
1 negcl 10917 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 shftfval.1 . . . 4 𝐹 ∈ V
32shftval 14474 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐵 − -𝐴)))
41, 3sylan 584 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐵 − -𝐴)))
5 subneg 10966 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − -𝐴) = (𝐵 + 𝐴))
65ancoms 463 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − -𝐴) = (𝐵 + 𝐴))
7 addcom 10857 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
86, 7eqtr4d 2797 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − -𝐴) = (𝐴 + 𝐵))
98fveq2d 6663 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹‘(𝐵 − -𝐴)) = (𝐹‘(𝐴 + 𝐵)))
104, 9eqtrd 2794 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3410  cfv 6336  (class class class)co 7151  cc 10566   + caddc 10571  cmin 10901  -cneg 10902   shift cshi 14466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-po 5444  df-so 5445  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10708  df-mnf 10709  df-ltxr 10711  df-sub 10903  df-neg 10904  df-shft 14467
This theorem is referenced by:  climshft2  14980  eftlub  15503  geolim3  25027  dvradcnv  25108
  Copyright terms: Public domain W3C validator