MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltmuld Structured version   Visualization version   GIF version

Theorem sltmuld 28069
Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.)
Hypotheses
Ref Expression
sltmuld.1 (𝜑𝐴 No )
sltmuld.2 (𝜑𝐵 No )
sltmuld.3 (𝜑𝐶 No )
sltmuld.4 (𝜑𝐷 No )
sltmuld.5 (𝜑𝐴 <s 𝐵)
sltmuld.6 (𝜑𝐶 <s 𝐷)
Assertion
Ref Expression
sltmuld (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))

Proof of Theorem sltmuld
StepHypRef Expression
1 sltmuld.5 . 2 (𝜑𝐴 <s 𝐵)
2 sltmuld.6 . 2 (𝜑𝐶 <s 𝐷)
3 sltmuld.1 . . 3 (𝜑𝐴 No )
4 sltmuld.2 . . 3 (𝜑𝐵 No )
5 sltmuld.3 . . 3 (𝜑𝐶 No )
6 sltmuld.4 . . 3 (𝜑𝐷 No )
7 sltmul 28068 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝐶 No 𝐷 No )) → ((𝐴 <s 𝐵𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
83, 4, 5, 6, 7syl22anc 838 . 2 (𝜑 → ((𝐴 <s 𝐵𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
91, 2, 8mp2and 699 1 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2110   class class class wbr 5089  (class class class)co 7341   No csur 27571   <s cslt 27572   -s csubs 27955   ·s cmuls 28038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-2o 8381  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-muls 28039
This theorem is referenced by:  slemuld  28070  mulsgt0  28076  ssltmul1  28079  ssltmul2  28080
  Copyright terms: Public domain W3C validator