| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltmuld | Structured version Visualization version GIF version | ||
| Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| sltmuld.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| sltmuld.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| sltmuld.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| sltmuld.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
| sltmuld.5 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| sltmuld.6 | ⊢ (𝜑 → 𝐶 <s 𝐷) |
| Ref | Expression |
|---|---|
| sltmuld | ⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltmuld.5 | . 2 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 2 | sltmuld.6 | . 2 ⊢ (𝜑 → 𝐶 <s 𝐷) | |
| 3 | sltmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | sltmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 5 | sltmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 6 | sltmuld.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ No ) | |
| 7 | sltmul 28067 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐶 ∈ No ∧ 𝐷 ∈ No )) → ((𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))) | |
| 8 | 3, 4, 5, 6, 7 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))) |
| 9 | 1, 2, 8 | mp2and 699 | 1 ⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5117 (class class class)co 7400 No csur 27589 <s cslt 27590 -s csubs 27957 ·s cmuls 28037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-1o 8475 df-2o 8476 df-nadd 8673 df-no 27592 df-slt 27593 df-bday 27594 df-sle 27695 df-sslt 27731 df-scut 27733 df-0s 27774 df-made 27791 df-old 27792 df-left 27794 df-right 27795 df-norec 27876 df-norec2 27887 df-adds 27898 df-negs 27958 df-subs 27959 df-muls 28038 |
| This theorem is referenced by: slemuld 28069 mulsgt0 28075 ssltmul1 28078 ssltmul2 28079 |
| Copyright terms: Public domain | W3C validator |