![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negscl | Structured version Visualization version GIF version |
Description: The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
negscl | ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 27853 | . . 3 ⊢ 0s ∈ No | |
2 | negsprop 28041 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ∈ No ) → (( -us ‘𝐴) ∈ No ∧ (𝐴 <s 0s → ( -us ‘ 0s ) <s ( -us ‘𝐴)))) | |
3 | 1, 2 | mpan2 689 | . 2 ⊢ (𝐴 ∈ No → (( -us ‘𝐴) ∈ No ∧ (𝐴 <s 0s → ( -us ‘ 0s ) <s ( -us ‘𝐴)))) |
4 | 3 | simpld 493 | 1 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 class class class wbr 5145 ‘cfv 6546 No csur 27666 <s cslt 27667 0s c0s 27849 -us cnegs 28026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-no 27669 df-slt 27670 df-bday 27671 df-sslt 27808 df-scut 27810 df-0s 27851 df-made 27868 df-old 27869 df-left 27871 df-right 27872 df-norec 27949 df-negs 28028 |
This theorem is referenced by: negscld 28043 negsex 28049 negnegs 28050 sltneg 28051 sleneg 28052 negsdi 28056 negsf 28058 negsfo 28059 negsbday 28063 subscl 28066 subsf 28068 negsval2 28070 subadds 28074 sltsub1 28080 sltsub2 28081 recsex 28215 abssval 28231 absscl 28232 abssneg 28239 sleabs 28240 absslt 28241 elzn0s 28339 renegscl 28346 |
Copyright terms: Public domain | W3C validator |