| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negscl | Structured version Visualization version GIF version | ||
| Description: The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
| Ref | Expression |
|---|---|
| negscl | ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27770 | . . 3 ⊢ 0s ∈ No | |
| 2 | negsprop 27977 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ∈ No ) → (( -us ‘𝐴) ∈ No ∧ (𝐴 <s 0s → ( -us ‘ 0s ) <s ( -us ‘𝐴)))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ No → (( -us ‘𝐴) ∈ No ∧ (𝐴 <s 0s → ( -us ‘ 0s ) <s ( -us ‘𝐴)))) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 No csur 27578 <s cslt 27579 0s c0s 27766 -us cnegs 27961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sslt 27721 df-scut 27723 df-0s 27768 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-negs 27963 |
| This theorem is referenced by: negscld 27979 negsex 27985 negnegs 27986 sltneg 27987 sleneg 27988 negsdi 27992 negsf 27994 negsfo 27995 negsbday 27999 subscl 28002 subsf 28004 negsval2 28006 subadds 28010 sltsub1 28016 sltsub2 28017 recsex 28157 abssval 28177 absscl 28178 abssneg 28185 sleabs 28186 absslt 28187 elzn0s 28322 elnnzs 28325 renegscl 28400 |
| Copyright terms: Public domain | W3C validator |