| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-mullt0d | Structured version Visualization version GIF version | ||
| Description: The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025.) |
| Ref | Expression |
|---|---|
| sn-mullt0d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| sn-mullt0d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| sn-mullt0d.1 | ⊢ (𝜑 → 𝐴 < 0) |
| sn-mullt0d.2 | ⊢ (𝜑 → 𝐵 < 0) |
| Ref | Expression |
|---|---|
| sn-mullt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-mullt0d.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 0) | |
| 2 | 1 | lt0ne0d 11750 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 3 | sn-mullt0d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 < 0) | |
| 4 | 3 | lt0ne0d 11750 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 5 | 2, 4 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) |
| 6 | neanior 3019 | . . . . . 6 ⊢ ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
| 8 | sn-mullt0d.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | sn-mullt0d.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 10 | 8, 9 | sn-remul0ord 42403 | . . . . 5 ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
| 11 | 7, 10 | mtbird 325 | . . . 4 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) = 0) |
| 12 | 11 | neqcomd 2740 | . . 3 ⊢ (𝜑 → ¬ 0 = (𝐴 · 𝐵)) |
| 13 | 0red 11184 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 14 | 9, 13, 3 | ltnsymd 11330 | . . . 4 ⊢ (𝜑 → ¬ 0 < 𝐵) |
| 15 | 8, 9, 1 | mullt0b1d 42478 | . . . 4 ⊢ (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0)) |
| 16 | 14, 15 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) < 0) |
| 17 | ioran 985 | . . 3 ⊢ (¬ (0 = (𝐴 · 𝐵) ∨ (𝐴 · 𝐵) < 0) ↔ (¬ 0 = (𝐴 · 𝐵) ∧ ¬ (𝐴 · 𝐵) < 0)) | |
| 18 | 12, 16, 17 | sylanbrc 583 | . 2 ⊢ (𝜑 → ¬ (0 = (𝐴 · 𝐵) ∨ (𝐴 · 𝐵) < 0)) |
| 19 | 8, 9 | remulcld 11211 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 20 | 13, 19 | lttrid 11319 | . 2 ⊢ (𝜑 → (0 < (𝐴 · 𝐵) ↔ ¬ (0 = (𝐴 · 𝐵) ∨ (𝐴 · 𝐵) < 0))) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 · cmul 11080 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-2 12256 df-3 12257 df-resub 42361 df-rediv 42436 |
| This theorem is referenced by: sn-msqgt0d 42481 |
| Copyright terms: Public domain | W3C validator |