| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-mullt0d | Structured version Visualization version GIF version | ||
| Description: The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025.) |
| Ref | Expression |
|---|---|
| sn-mullt0d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| sn-mullt0d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| sn-mullt0d.1 | ⊢ (𝜑 → 𝐴 < 0) |
| sn-mullt0d.2 | ⊢ (𝜑 → 𝐵 < 0) |
| Ref | Expression |
|---|---|
| sn-mullt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-mullt0d.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 0) | |
| 2 | 1 | lt0ne0d 11682 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 3 | sn-mullt0d.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 < 0) | |
| 4 | 3 | lt0ne0d 11682 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 5 | 2, 4 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) |
| 6 | neanior 3021 | . . . . . 6 ⊢ ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
| 8 | sn-mullt0d.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | sn-mullt0d.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 10 | 8, 9 | sn-remul0ord 42500 | . . . . 5 ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
| 11 | 7, 10 | mtbird 325 | . . . 4 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) = 0) |
| 12 | 11 | neqcomd 2741 | . . 3 ⊢ (𝜑 → ¬ 0 = (𝐴 · 𝐵)) |
| 13 | 0red 11115 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 14 | 9, 13, 3 | ltnsymd 11262 | . . . 4 ⊢ (𝜑 → ¬ 0 < 𝐵) |
| 15 | 8, 9, 1 | mullt0b1d 42575 | . . . 4 ⊢ (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0)) |
| 16 | 14, 15 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) < 0) |
| 17 | ioran 985 | . . 3 ⊢ (¬ (0 = (𝐴 · 𝐵) ∨ (𝐴 · 𝐵) < 0) ↔ (¬ 0 = (𝐴 · 𝐵) ∧ ¬ (𝐴 · 𝐵) < 0)) | |
| 18 | 12, 16, 17 | sylanbrc 583 | . 2 ⊢ (𝜑 → ¬ (0 = (𝐴 · 𝐵) ∨ (𝐴 · 𝐵) < 0)) |
| 19 | 8, 9 | remulcld 11142 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 20 | 13, 19 | lttrid 11251 | . 2 ⊢ (𝜑 → (0 < (𝐴 · 𝐵) ↔ ¬ (0 = (𝐴 · 𝐵) ∨ (𝐴 · 𝐵) < 0))) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 · cmul 11011 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-2 12188 df-3 12189 df-resub 42458 df-rediv 42533 |
| This theorem is referenced by: sn-msqgt0d 42578 |
| Copyright terms: Public domain | W3C validator |