Proof of Theorem mullt0b2d
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴) |
| 2 | 1 | gt0ne0d 11748 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| 3 | | mullt0b2d.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 < 0) |
| 4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 < 0) |
| 5 | 4 | lt0ne0d 11749 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 ≠ 0) |
| 6 | 2, 5 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < 𝐴) → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) |
| 7 | | neanior 3019 |
. . . . . 6
⊢ ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
| 8 | 6, 7 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 0 < 𝐴) → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
| 9 | | mullt0b2d.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
| 11 | | mullt0b2d.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℝ) |
| 13 | 10, 12 | sn-remul0ord 42391 |
. . . . 5
⊢ ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
| 14 | 8, 13 | mtbird 325 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝐴) → ¬ (𝐴 · 𝐵) = 0) |
| 15 | | 0red 11183 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
| 16 | 11, 15, 3 | ltnsymd 11329 |
. . . . . 6
⊢ (𝜑 → ¬ 0 < 𝐵) |
| 17 | 16 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 < 𝐴) → ¬ 0 < 𝐵) |
| 18 | 10, 12, 1 | mulgt0b1d 42455 |
. . . . 5
⊢ ((𝜑 ∧ 0 < 𝐴) → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵))) |
| 19 | 17, 18 | mtbid 324 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝐴) → ¬ 0 < (𝐴 · 𝐵)) |
| 20 | | ioran 985 |
. . . 4
⊢ (¬
((𝐴 · 𝐵) = 0 ∨ 0 < (𝐴 · 𝐵)) ↔ (¬ (𝐴 · 𝐵) = 0 ∧ ¬ 0 < (𝐴 · 𝐵))) |
| 21 | 14, 19, 20 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝐴) → ¬ ((𝐴 · 𝐵) = 0 ∨ 0 < (𝐴 · 𝐵))) |
| 22 | 9, 11 | remulcld 11210 |
. . . . 5
⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 23 | 22, 15 | lttrid 11318 |
. . . 4
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ¬ ((𝐴 · 𝐵) = 0 ∨ 0 < (𝐴 · 𝐵)))) |
| 24 | 23 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · 𝐵) < 0 ↔ ¬ ((𝐴 · 𝐵) = 0 ∨ 0 < (𝐴 · 𝐵)))) |
| 25 | 21, 24 | mpbird 257 |
. 2
⊢ ((𝜑 ∧ 0 < 𝐴) → (𝐴 · 𝐵) < 0) |
| 26 | | remul02 42388 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → (0
· 𝐵) =
0) |
| 27 | 11, 26 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0 · 𝐵) = 0) |
| 28 | 15 | ltnrd 11314 |
. . . . . . . 8
⊢ (𝜑 → ¬ 0 <
0) |
| 29 | 27, 28 | eqnbrtrd 5127 |
. . . . . . 7
⊢ (𝜑 → ¬ (0 · 𝐵) < 0) |
| 30 | | oveq1 7396 |
. . . . . . . . 9
⊢ (0 =
𝐴 → (0 · 𝐵) = (𝐴 · 𝐵)) |
| 31 | 30 | breq1d 5119 |
. . . . . . . 8
⊢ (0 =
𝐴 → ((0 · 𝐵) < 0 ↔ (𝐴 · 𝐵) < 0)) |
| 32 | 31 | notbid 318 |
. . . . . . 7
⊢ (0 =
𝐴 → (¬ (0 ·
𝐵) < 0 ↔ ¬
(𝐴 · 𝐵) < 0)) |
| 33 | 29, 32 | syl5ibcom 245 |
. . . . . 6
⊢ (𝜑 → (0 = 𝐴 → ¬ (𝐴 · 𝐵) < 0)) |
| 34 | 33 | con2d 134 |
. . . . 5
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 → ¬ 0 = 𝐴)) |
| 35 | 34 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ¬ 0 = 𝐴) |
| 36 | 16 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ¬ 0 < 𝐵) |
| 37 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (𝐴 · 𝐵) < 0) |
| 38 | 9 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
| 39 | 11 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ) |
| 40 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐴 < 0) |
| 41 | 38, 39, 40 | mullt0b1d 42466 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0)) |
| 42 | 37, 41 | mpbird 257 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵) |
| 43 | 36, 42 | mtand 815 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ¬ 𝐴 < 0) |
| 44 | | ioran 985 |
. . . 4
⊢ (¬ (0
= 𝐴 ∨ 𝐴 < 0) ↔ (¬ 0 = 𝐴 ∧ ¬ 𝐴 < 0)) |
| 45 | 35, 43, 44 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ¬ (0 = 𝐴 ∨ 𝐴 < 0)) |
| 46 | 15, 9 | lttrid 11318 |
. . . 4
⊢ (𝜑 → (0 < 𝐴 ↔ ¬ (0 = 𝐴 ∨ 𝐴 < 0))) |
| 47 | 46 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (0 < 𝐴 ↔ ¬ (0 = 𝐴 ∨ 𝐴 < 0))) |
| 48 | 45, 47 | mpbird 257 |
. 2
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 0 < 𝐴) |
| 49 | 25, 48 | impbida 800 |
1
⊢ (𝜑 → (0 < 𝐴 ↔ (𝐴 · 𝐵) < 0)) |