Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snifpsrbag | Structured version Visualization version GIF version |
Description: A bag containing one element is a finite bag. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
snifpsrbag | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
2 | 0nn0 12178 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℕ0) |
4 | 1, 3 | ifcld 4502 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0) |
5 | 4 | adantr 480 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ 𝐼) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0) |
6 | 5 | fmpttd 6971 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) |
7 | id 22 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
8 | c0ex 10900 | . . . . . 6 ⊢ 0 ∈ V | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ V) |
10 | eqid 2738 | . . . . 5 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) | |
11 | 7, 9, 10 | sniffsupp 9089 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0) |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0) |
13 | frnnn0fsupp 12220 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)) | |
14 | 13 | adantlr 711 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)) |
15 | 14 | bicomd 222 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)) |
16 | 6, 15 | mpdan 683 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)) |
17 | 12, 16 | mpbird 256 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin) |
18 | psrbag.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | 18 | psrbag 21030 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))) |
20 | 19 | adantr 480 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))) |
21 | 6, 17, 20 | mpbir2and 709 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 finSupp cfsupp 9058 0cc0 10802 ℕcn 11903 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-nn 11904 df-n0 12164 |
This theorem is referenced by: fczpsrbag 21036 mvrid 21102 mvrf1 21104 mplcoe3 21149 mplcoe5 21151 |
Copyright terms: Public domain | W3C validator |