Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snifpsrbag | Structured version Visualization version GIF version |
Description: A bag containing one element is a finite bag. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
snifpsrbag | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
2 | 0nn0 11991 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℕ0) |
4 | 1, 3 | ifcld 4460 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0) |
5 | 4 | adantr 484 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ 𝐼) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0) |
6 | 5 | fmpttd 6889 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) |
7 | id 22 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
8 | c0ex 10713 | . . . . . 6 ⊢ 0 ∈ V | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ V) |
10 | eqid 2738 | . . . . 5 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) | |
11 | 7, 9, 10 | sniffsupp 8937 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0) |
12 | 11 | adantr 484 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0) |
13 | frnnn0fsupp 12033 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)) | |
14 | 13 | adantlr 715 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)) |
15 | 14 | bicomd 226 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)) |
16 | 6, 15 | mpdan 687 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)) |
17 | 12, 16 | mpbird 260 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin) |
18 | psrbag.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | 18 | psrbag 20730 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))) |
20 | 19 | adantr 484 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))) |
21 | 6, 17, 20 | mpbir2and 713 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {crab 3057 Vcvv 3398 ifcif 4414 class class class wbr 5030 ↦ cmpt 5110 ◡ccnv 5524 “ cima 5528 ⟶wf 6335 (class class class)co 7170 ↑m cmap 8437 Fincfn 8555 finSupp cfsupp 8906 0cc0 10615 ℕcn 11716 ℕ0cn0 11976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-nn 11717 df-n0 11977 |
This theorem is referenced by: fczpsrbag 20736 mvrid 20802 mvrf1 20804 mplcoe3 20849 mplcoe5 20851 |
Copyright terms: Public domain | W3C validator |