MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snifpsrbag Structured version   Visualization version   GIF version

Theorem snifpsrbag 21941
Description: A bag containing one element is a finite bag. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 8-Jul-2019.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
snifpsrbag ((𝐼𝑉𝑁 ∈ ℕ0) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐼   𝑓,𝑁,𝑦   𝑓,𝑋,𝑦   𝑦,𝐼   𝑦,𝑉
Allowed substitution hints:   𝐷(𝑦,𝑓)   𝑉(𝑓)

Proof of Theorem snifpsrbag
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐼𝑉𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
2 0nn0 12543 . . . . . 6 0 ∈ ℕ0
32a1i 11 . . . . 5 ((𝐼𝑉𝑁 ∈ ℕ0) → 0 ∈ ℕ0)
41, 3ifcld 4571 . . . 4 ((𝐼𝑉𝑁 ∈ ℕ0) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0)
54adantr 480 . . 3 (((𝐼𝑉𝑁 ∈ ℕ0) ∧ 𝑦𝐼) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0)
65fmpttd 7134 . 2 ((𝐼𝑉𝑁 ∈ ℕ0) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0)
7 id 22 . . . . 5 (𝐼𝑉𝐼𝑉)
8 c0ex 11256 . . . . . 6 0 ∈ V
98a1i 11 . . . . 5 (𝐼𝑉 → 0 ∈ V)
10 eqid 2736 . . . . 5 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0))
117, 9, 10sniffsupp 9441 . . . 4 (𝐼𝑉 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)
1211adantr 480 . . 3 ((𝐼𝑉𝑁 ∈ ℕ0) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)
13 fcdmnn0fsupp 12586 . . . . . 6 ((𝐼𝑉 ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))
1413adantlr 715 . . . . 5 (((𝐼𝑉𝑁 ∈ ℕ0) ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))
1514bicomd 223 . . . 4 (((𝐼𝑉𝑁 ∈ ℕ0) ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → (((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0))
166, 15mpdan 687 . . 3 ((𝐼𝑉𝑁 ∈ ℕ0) → (((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0))
1712, 16mpbird 257 . 2 ((𝐼𝑉𝑁 ∈ ℕ0) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)
18 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1918psrbag 21938 . . 3 (𝐼𝑉 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)))
2019adantr 480 . 2 ((𝐼𝑉𝑁 ∈ ℕ0) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)))
216, 17, 20mpbir2and 713 1 ((𝐼𝑉𝑁 ∈ ℕ0) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  ifcif 4524   class class class wbr 5142  cmpt 5224  ccnv 5683  cima 5687  wf 6556  (class class class)co 7432  m cmap 8867  Fincfn 8986   finSupp cfsupp 9402  0cc0 11156  cn 12267  0cn0 12528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-nn 12268  df-n0 12529
This theorem is referenced by:  fczpsrbag  21942  mvrid  22005  mvrf1  22007  mplcoe3  22057  mplcoe5  22059  psdcl  22166
  Copyright terms: Public domain W3C validator