Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snifpsrbag | Structured version Visualization version GIF version |
Description: A bag containing one element is a finite bag. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
snifpsrbag | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
2 | 0nn0 12248 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℕ0) |
4 | 1, 3 | ifcld 4505 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0) |
5 | 4 | adantr 481 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ 𝐼) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0) |
6 | 5 | fmpttd 6989 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) |
7 | id 22 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
8 | c0ex 10969 | . . . . . 6 ⊢ 0 ∈ V | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ V) |
10 | eqid 2738 | . . . . 5 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) | |
11 | 7, 9, 10 | sniffsupp 9159 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0) |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0) |
13 | frnnn0fsupp 12290 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)) | |
14 | 13 | adantlr 712 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)) |
15 | 14 | bicomd 222 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)) |
16 | 6, 15 | mpdan 684 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)) |
17 | 12, 16 | mpbird 256 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin) |
18 | psrbag.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | 18 | psrbag 21120 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))) |
20 | 19 | adantr 481 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))) |
21 | 6, 17, 20 | mpbir2and 710 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 Fincfn 8733 finSupp cfsupp 9128 0cc0 10871 ℕcn 11973 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-nn 11974 df-n0 12234 |
This theorem is referenced by: fczpsrbag 21126 mvrid 21192 mvrf1 21194 mplcoe3 21239 mplcoe5 21241 |
Copyright terms: Public domain | W3C validator |