![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlconid | Structured version Visualization version GIF version |
Description: The composition of two different translations is not the identity translation. (Contributed by NM, 22-Jul-2013.) |
Ref | Expression |
---|---|
trlconid.b | ⊢ 𝐵 = (Base‘𝐾) |
trlconid.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlconid.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlconid.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlconid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐹 ∘ 𝐺) ≠ ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | trlconid.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | trlconid.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | trlconid.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | trlcoat 40061 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Atoms‘𝐾)) |
6 | simp1 1135 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | simp2l 1198 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → 𝐹 ∈ 𝑇) | |
8 | simp2r 1199 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → 𝐺 ∈ 𝑇) | |
9 | 2, 3 | ltrnco 40057 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
10 | 6, 7, 8, 9 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
11 | trlconid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
12 | 11, 1, 2, 3, 4 | trlnidatb 39515 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝐹 ∘ 𝐺) ≠ ( I ↾ 𝐵) ↔ (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Atoms‘𝐾))) |
13 | 6, 10, 12 | syl2anc 583 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → ((𝐹 ∘ 𝐺) ≠ ( I ↾ 𝐵) ↔ (𝑅‘(𝐹 ∘ 𝐺)) ∈ (Atoms‘𝐾))) |
14 | 5, 13 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐹 ∘ 𝐺) ≠ ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 I cid 5573 ↾ cres 5678 ∘ ccom 5680 ‘cfv 6543 Basecbs 17151 Atomscatm 38600 HLchlt 38687 LHypclh 39322 LTrncltrn 39439 trLctrl 39496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-riotaBAD 38290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-undef 8264 df-map 8828 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-oposet 38513 df-ol 38515 df-oml 38516 df-covers 38603 df-ats 38604 df-atl 38635 df-cvlat 38659 df-hlat 38688 df-llines 38836 df-lplanes 38837 df-lvols 38838 df-lines 38839 df-psubsp 38841 df-pmap 38842 df-padd 39134 df-lhyp 39326 df-laut 39327 df-ldil 39442 df-ltrn 39443 df-trl 39497 |
This theorem is referenced by: cdlemk47 40287 cdlemk52 40292 cdlemk53a 40293 |
Copyright terms: Public domain | W3C validator |