![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlconid | Structured version Visualization version GIF version |
Description: The composition of two different translations is not the identity translation. (Contributed by NM, 22-Jul-2013.) |
Ref | Expression |
---|---|
trlconid.b | β’ π΅ = (BaseβπΎ) |
trlconid.h | β’ π» = (LHypβπΎ) |
trlconid.t | β’ π = ((LTrnβπΎ)βπ) |
trlconid.r | β’ π = ((trLβπΎ)βπ) |
Ref | Expression |
---|---|
trlconid | β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (πΉ β πΊ) β ( I βΎ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
2 | trlconid.h | . . 3 β’ π» = (LHypβπΎ) | |
3 | trlconid.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
4 | trlconid.r | . . 3 β’ π = ((trLβπΎ)βπ) | |
5 | 1, 2, 3, 4 | trlcoat 39215 | . 2 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (π β(πΉ β πΊ)) β (AtomsβπΎ)) |
6 | simp1 1137 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (πΎ β HL β§ π β π»)) | |
7 | simp2l 1200 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β πΉ β π) | |
8 | simp2r 1201 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β πΊ β π) | |
9 | 2, 3 | ltrnco 39211 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πΉ β πΊ) β π) |
10 | 6, 7, 8, 9 | syl3anc 1372 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (πΉ β πΊ) β π) |
11 | trlconid.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
12 | 11, 1, 2, 3, 4 | trlnidatb 38669 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (πΉ β πΊ) β π) β ((πΉ β πΊ) β ( I βΎ π΅) β (π β(πΉ β πΊ)) β (AtomsβπΎ))) |
13 | 6, 10, 12 | syl2anc 585 | . 2 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β ((πΉ β πΊ) β ( I βΎ π΅) β (π β(πΉ β πΊ)) β (AtomsβπΎ))) |
14 | 5, 13 | mpbird 257 | 1 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (πΉ β πΊ) β ( I βΎ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2944 I cid 5535 βΎ cres 5640 β ccom 5642 βcfv 6501 Basecbs 17090 Atomscatm 37754 HLchlt 37841 LHypclh 38476 LTrncltrn 38593 trLctrl 38650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-riotaBAD 37444 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 df-undef 8209 df-map 8774 df-proset 18191 df-poset 18209 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18328 df-clat 18395 df-oposet 37667 df-ol 37669 df-oml 37670 df-covers 37757 df-ats 37758 df-atl 37789 df-cvlat 37813 df-hlat 37842 df-llines 37990 df-lplanes 37991 df-lvols 37992 df-lines 37993 df-psubsp 37995 df-pmap 37996 df-padd 38288 df-lhyp 38480 df-laut 38481 df-ldil 38596 df-ltrn 38597 df-trl 38651 |
This theorem is referenced by: cdlemk47 39441 cdlemk52 39446 cdlemk53a 39447 |
Copyright terms: Public domain | W3C validator |