Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlconid Structured version   Visualization version   GIF version

Theorem trlconid 40719
Description: The composition of two different translations is not the identity translation. (Contributed by NM, 22-Jul-2013.)
Hypotheses
Ref Expression
trlconid.b 𝐵 = (Base‘𝐾)
trlconid.h 𝐻 = (LHyp‘𝐾)
trlconid.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlconid.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlconid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹𝐺) ≠ ( I ↾ 𝐵))

Proof of Theorem trlconid
StepHypRef Expression
1 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
2 trlconid.h . . 3 𝐻 = (LHyp‘𝐾)
3 trlconid.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 trlconid.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
51, 2, 3, 4trlcoat 40717 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾))
6 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝐹𝑇)
8 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝐺𝑇)
92, 3ltrnco 40713 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
106, 7, 8, 9syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹𝐺) ∈ 𝑇)
11 trlconid.b . . . 4 𝐵 = (Base‘𝐾)
1211, 1, 2, 3, 4trlnidatb 40171 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝐹𝐺) ≠ ( I ↾ 𝐵) ↔ (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾)))
136, 10, 12syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ((𝐹𝐺) ≠ ( I ↾ 𝐵) ↔ (𝑅‘(𝐹𝐺)) ∈ (Atoms‘𝐾)))
145, 13mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹𝐺) ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   I cid 5532  cres 5640  ccom 5642  cfv 6511  Basecbs 17179  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  cdlemk47  40943  cdlemk52  40948  cdlemk53a  40949
  Copyright terms: Public domain W3C validator