Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlconid Structured version   Visualization version   GIF version

Theorem trlconid 39217
Description: The composition of two different translations is not the identity translation. (Contributed by NM, 22-Jul-2013.)
Hypotheses
Ref Expression
trlconid.b 𝐡 = (Baseβ€˜πΎ)
trlconid.h 𝐻 = (LHypβ€˜πΎ)
trlconid.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlconid.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlconid (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝐹 ∘ 𝐺) β‰  ( I β†Ύ 𝐡))

Proof of Theorem trlconid
StepHypRef Expression
1 eqid 2737 . . 3 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
2 trlconid.h . . 3 𝐻 = (LHypβ€˜πΎ)
3 trlconid.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 trlconid.r . . 3 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4trlcoat 39215 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (π‘…β€˜(𝐹 ∘ 𝐺)) ∈ (Atomsβ€˜πΎ))
6 simp1 1137 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
7 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ 𝐹 ∈ 𝑇)
8 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ 𝐺 ∈ 𝑇)
92, 3ltrnco 39211 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
106, 7, 8, 9syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
11 trlconid.b . . . 4 𝐡 = (Baseβ€˜πΎ)
1211, 1, 2, 3, 4trlnidatb 38669 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) β†’ ((𝐹 ∘ 𝐺) β‰  ( I β†Ύ 𝐡) ↔ (π‘…β€˜(𝐹 ∘ 𝐺)) ∈ (Atomsβ€˜πΎ)))
136, 10, 12syl2anc 585 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ ((𝐹 ∘ 𝐺) β‰  ( I β†Ύ 𝐡) ↔ (π‘…β€˜(𝐹 ∘ 𝐺)) ∈ (Atomsβ€˜πΎ)))
145, 13mpbird 257 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝐹 ∘ 𝐺) β‰  ( I β†Ύ 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   I cid 5535   β†Ύ cres 5640   ∘ ccom 5642  β€˜cfv 6501  Basecbs 17090  Atomscatm 37754  HLchlt 37841  LHypclh 38476  LTrncltrn 38593  trLctrl 38650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-riotaBAD 37444
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-undef 8209  df-map 8774  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-p1 18322  df-lat 18328  df-clat 18395  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-llines 37990  df-lplanes 37991  df-lvols 37992  df-lines 37993  df-psubsp 37995  df-pmap 37996  df-padd 38288  df-lhyp 38480  df-laut 38481  df-ldil 38596  df-ltrn 38597  df-trl 38651
This theorem is referenced by:  cdlemk47  39441  cdlemk52  39446  cdlemk53a  39447
  Copyright terms: Public domain W3C validator