Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem4 Structured version   Visualization version   GIF version

Theorem knoppndvlem4 33092
Description: Lemma for knoppndv 33111. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem4.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem4.a (𝜑𝐴 ∈ ℝ)
knoppndvlem4.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem4.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem4 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem4
Dummy variables 𝑘 𝑣 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12032 . 2 0 = (ℤ‘0)
2 0zd 11744 . 2 (𝜑 → 0 ∈ ℤ)
3 knoppndvlem4.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4 knoppndvlem4.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
5 knoppndvlem4.n . . 3 (𝜑𝑁 ∈ ℕ)
6 knoppndvlem4.c . . . . 5 (𝜑𝐶 ∈ (-1(,)1))
76knoppndvlem3 33091 . . . 4 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
87simpld 490 . . 3 (𝜑𝐶 ∈ ℝ)
93, 4, 5, 8knoppcnlem8 33077 . 2 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑𝑚 ℝ))
10 knoppndvlem4.a . 2 (𝜑𝐴 ∈ ℝ)
11 seqex 13125 . . 3 seq0( + , (𝐹𝐴)) ∈ V
1211a1i 11 . 2 (𝜑 → seq0( + , (𝐹𝐴)) ∈ V)
135adantr 474 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
148adantr 474 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
15 simpr 479 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
163, 4, 13, 14, 15knoppcnlem7 33076 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
1716fveq1d 6450 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝐴) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴))
18 eqid 2778 . . . . 5 (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))
19 fveq2 6448 . . . . . . 7 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
2019seqeq3d 13131 . . . . . 6 (𝑣 = 𝐴 → seq0( + , (𝐹𝑣)) = seq0( + , (𝐹𝐴)))
2120fveq1d 6450 . . . . 5 (𝑣 = 𝐴 → (seq0( + , (𝐹𝑣))‘𝑘) = (seq0( + , (𝐹𝐴))‘𝑘))
22 fvexd 6463 . . . . 5 (𝜑 → (seq0( + , (𝐹𝐴))‘𝑘) ∈ V)
2318, 21, 10, 22fvmptd3 6566 . . . 4 (𝜑 → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
2423adantr 474 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
2517, 24eqtrd 2814 . 2 ((𝜑𝑘 ∈ ℕ0) → ((seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
26 knoppndvlem4.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
277simprd 491 . . 3 (𝜑 → (abs‘𝐶) < 1)
283, 4, 26, 5, 8, 27knoppcnlem9 33078 . 2 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
291, 2, 9, 10, 12, 25, 28ulmclm 24582 1 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398   class class class wbr 4888  cmpt 4967  cfv 6137  (class class class)co 6924  𝑓 cof 7174  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279   < clt 10413  cmin 10608  -cneg 10609   / cdiv 11034  cn 11378  2c2 11434  0cn0 11646  (,)cioo 12491  cfl 12914  seqcseq 13123  cexp 13182  abscabs 14385  cli 14627  Σcsu 14828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-z 11733  df-uz 11997  df-rp 12142  df-ioo 12495  df-ico 12497  df-fz 12648  df-fzo 12789  df-fl 12916  df-seq 13124  df-exp 13183  df-hash 13440  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-limsup 14614  df-clim 14631  df-rlim 14632  df-sum 14829  df-ulm 24572
This theorem is referenced by:  knoppndvlem6  33094  knoppf  33112
  Copyright terms: Public domain W3C validator