Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem4 Structured version   Visualization version   GIF version

Theorem knoppndvlem4 33854
Description: Lemma for knoppndv 33873. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem4.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem4.a (𝜑𝐴 ∈ ℝ)
knoppndvlem4.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem4.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem4 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem4
Dummy variables 𝑘 𝑣 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12281 . 2 0 = (ℤ‘0)
2 0zd 11994 . 2 (𝜑 → 0 ∈ ℤ)
3 knoppndvlem4.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4 knoppndvlem4.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
5 knoppndvlem4.n . . 3 (𝜑𝑁 ∈ ℕ)
6 knoppndvlem4.c . . . . 5 (𝜑𝐶 ∈ (-1(,)1))
76knoppndvlem3 33853 . . . 4 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
87simpld 497 . . 3 (𝜑𝐶 ∈ ℝ)
93, 4, 5, 8knoppcnlem8 33839 . 2 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
10 knoppndvlem4.a . 2 (𝜑𝐴 ∈ ℝ)
11 seqex 13372 . . 3 seq0( + , (𝐹𝐴)) ∈ V
1211a1i 11 . 2 (𝜑 → seq0( + , (𝐹𝐴)) ∈ V)
135adantr 483 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
148adantr 483 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
15 simpr 487 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
163, 4, 13, 14, 15knoppcnlem7 33838 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
1716fveq1d 6672 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝐴) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴))
18 eqid 2821 . . . . 5 (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))
19 fveq2 6670 . . . . . . 7 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
2019seqeq3d 13378 . . . . . 6 (𝑣 = 𝐴 → seq0( + , (𝐹𝑣)) = seq0( + , (𝐹𝐴)))
2120fveq1d 6672 . . . . 5 (𝑣 = 𝐴 → (seq0( + , (𝐹𝑣))‘𝑘) = (seq0( + , (𝐹𝐴))‘𝑘))
22 fvexd 6685 . . . . 5 (𝜑 → (seq0( + , (𝐹𝐴))‘𝑘) ∈ V)
2318, 21, 10, 22fvmptd3 6791 . . . 4 (𝜑 → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
2423adantr 483 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
2517, 24eqtrd 2856 . 2 ((𝜑𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
26 knoppndvlem4.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
277simprd 498 . . 3 (𝜑 → (abs‘𝐶) < 1)
283, 4, 26, 5, 8, 27knoppcnlem9 33840 . 2 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
291, 2, 9, 10, 12, 25, 28ulmclm 24975 1 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  f cof 7407  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  (,)cioo 12739  cfl 13161  seqcseq 13370  cexp 13430  abscabs 14593  cli 14841  Σcsu 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ioo 12743  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ulm 24965
This theorem is referenced by:  knoppndvlem6  33856  knoppf  33874
  Copyright terms: Public domain W3C validator