Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem4 Structured version   Visualization version   GIF version

Theorem knoppndvlem4 34695
Description: Lemma for knoppndv 34714. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem4.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem4.a (𝜑𝐴 ∈ ℝ)
knoppndvlem4.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem4.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem4 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem4
Dummy variables 𝑘 𝑣 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12620 . 2 0 = (ℤ‘0)
2 0zd 12331 . 2 (𝜑 → 0 ∈ ℤ)
3 knoppndvlem4.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4 knoppndvlem4.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
5 knoppndvlem4.n . . 3 (𝜑𝑁 ∈ ℕ)
6 knoppndvlem4.c . . . . 5 (𝜑𝐶 ∈ (-1(,)1))
76knoppndvlem3 34694 . . . 4 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
87simpld 495 . . 3 (𝜑𝐶 ∈ ℝ)
93, 4, 5, 8knoppcnlem8 34680 . 2 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
10 knoppndvlem4.a . 2 (𝜑𝐴 ∈ ℝ)
11 seqex 13723 . . 3 seq0( + , (𝐹𝐴)) ∈ V
1211a1i 11 . 2 (𝜑 → seq0( + , (𝐹𝐴)) ∈ V)
135adantr 481 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
148adantr 481 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
15 simpr 485 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
163, 4, 13, 14, 15knoppcnlem7 34679 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
1716fveq1d 6776 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝐴) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴))
18 eqid 2738 . . . . 5 (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))
19 fveq2 6774 . . . . . . 7 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
2019seqeq3d 13729 . . . . . 6 (𝑣 = 𝐴 → seq0( + , (𝐹𝑣)) = seq0( + , (𝐹𝐴)))
2120fveq1d 6776 . . . . 5 (𝑣 = 𝐴 → (seq0( + , (𝐹𝑣))‘𝑘) = (seq0( + , (𝐹𝐴))‘𝑘))
22 fvexd 6789 . . . . 5 (𝜑 → (seq0( + , (𝐹𝐴))‘𝑘) ∈ V)
2318, 21, 10, 22fvmptd3 6898 . . . 4 (𝜑 → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
2423adantr 481 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
2517, 24eqtrd 2778 . 2 ((𝜑𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
26 knoppndvlem4.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
277simprd 496 . . 3 (𝜑 → (abs‘𝐶) < 1)
283, 4, 26, 5, 8, 27knoppcnlem9 34681 . 2 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
291, 2, 9, 10, 12, 25, 28ulmclm 25546 1 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  f cof 7531  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  (,)cioo 13079  cfl 13510  seqcseq 13721  cexp 13782  abscabs 14945  cli 15193  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioo 13083  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ulm 25536
This theorem is referenced by:  knoppndvlem6  34697  knoppf  34715
  Copyright terms: Public domain W3C validator