Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem4 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 34710. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem4.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
knoppndvlem4.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppndvlem4.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
knoppndvlem4.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
knoppndvlem4.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndvlem4.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
knoppndvlem4 | ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12619 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12331 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | knoppndvlem4.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
4 | knoppndvlem4.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
5 | knoppndvlem4.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | knoppndvlem4.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
7 | 6 | knoppndvlem3 34690 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
8 | 7 | simpld 495 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
9 | 3, 4, 5, 8 | knoppcnlem8 34676 | . 2 ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ)) |
10 | knoppndvlem4.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
11 | seqex 13721 | . . 3 ⊢ seq0( + , (𝐹‘𝐴)) ∈ V | |
12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ∈ V) |
13 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ) |
14 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ) |
15 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
16 | 3, 4, 13, 14, 15 | knoppcnlem7 34675 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))) |
17 | 16 | fveq1d 6773 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)‘𝐴) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴)) |
18 | eqid 2740 | . . . . 5 ⊢ (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘)) | |
19 | fveq2 6771 | . . . . . . 7 ⊢ (𝑣 = 𝐴 → (𝐹‘𝑣) = (𝐹‘𝐴)) | |
20 | 19 | seqeq3d 13727 | . . . . . 6 ⊢ (𝑣 = 𝐴 → seq0( + , (𝐹‘𝑣)) = seq0( + , (𝐹‘𝐴))) |
21 | 20 | fveq1d 6773 | . . . . 5 ⊢ (𝑣 = 𝐴 → (seq0( + , (𝐹‘𝑣))‘𝑘) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
22 | fvexd 6786 | . . . . 5 ⊢ (𝜑 → (seq0( + , (𝐹‘𝐴))‘𝑘) ∈ V) | |
23 | 18, 21, 10, 22 | fvmptd3 6895 | . . . 4 ⊢ (𝜑 → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
24 | 23 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
25 | 17, 24 | eqtrd 2780 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
26 | knoppndvlem4.w | . . 3 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
27 | 7 | simprd 496 | . . 3 ⊢ (𝜑 → (abs‘𝐶) < 1) |
28 | 3, 4, 26, 5, 8, 27 | knoppcnlem9 34677 | . 2 ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊) |
29 | 1, 2, 9, 10, 12, 25, 28 | ulmclm 25544 | 1 ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 class class class wbr 5079 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 ∘f cof 7525 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 · cmul 10877 < clt 11010 − cmin 11205 -cneg 11206 / cdiv 11632 ℕcn 11973 2c2 12028 ℕ0cn0 12233 (,)cioo 13078 ⌊cfl 13508 seqcseq 13719 ↑cexp 13780 abscabs 14943 ⇝ cli 15191 Σcsu 15395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-ioo 13082 df-ico 13084 df-fz 13239 df-fzo 13382 df-fl 13510 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-ulm 25534 |
This theorem is referenced by: knoppndvlem6 34693 knoppf 34711 |
Copyright terms: Public domain | W3C validator |