| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36495. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem4.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppndvlem4.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppndvlem4.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| knoppndvlem4.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| knoppndvlem4.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem4.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| knoppndvlem4 | ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12811 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12517 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | knoppndvlem4.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 4 | knoppndvlem4.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 5 | knoppndvlem4.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | knoppndvlem4.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 7 | 6 | knoppndvlem3 36475 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 9 | 3, 4, 5, 8 | knoppcnlem8 36461 | . 2 ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ)) |
| 10 | knoppndvlem4.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 11 | seqex 13944 | . . 3 ⊢ seq0( + , (𝐹‘𝐴)) ∈ V | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ∈ V) |
| 13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ) |
| 14 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ) |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 16 | 3, 4, 13, 14, 15 | knoppcnlem7 36460 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))) |
| 17 | 16 | fveq1d 6842 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)‘𝐴) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴)) |
| 18 | eqid 2729 | . . . . 5 ⊢ (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘)) | |
| 19 | fveq2 6840 | . . . . . . 7 ⊢ (𝑣 = 𝐴 → (𝐹‘𝑣) = (𝐹‘𝐴)) | |
| 20 | 19 | seqeq3d 13950 | . . . . . 6 ⊢ (𝑣 = 𝐴 → seq0( + , (𝐹‘𝑣)) = seq0( + , (𝐹‘𝐴))) |
| 21 | 20 | fveq1d 6842 | . . . . 5 ⊢ (𝑣 = 𝐴 → (seq0( + , (𝐹‘𝑣))‘𝑘) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 22 | fvexd 6855 | . . . . 5 ⊢ (𝜑 → (seq0( + , (𝐹‘𝐴))‘𝑘) ∈ V) | |
| 23 | 18, 21, 10, 22 | fvmptd3 6973 | . . . 4 ⊢ (𝜑 → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 25 | 17, 24 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 26 | knoppndvlem4.w | . . 3 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 27 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → (abs‘𝐶) < 1) |
| 28 | 3, 4, 26, 5, 8, 27 | knoppcnlem9 36462 | . 2 ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊) |
| 29 | 1, 2, 9, 10, 12, 25, 28 | ulmclm 26272 | 1 ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 − cmin 11381 -cneg 11382 / cdiv 11811 ℕcn 12162 2c2 12217 ℕ0cn0 12418 (,)cioo 13282 ⌊cfl 13728 seqcseq 13942 ↑cexp 14002 abscabs 15176 ⇝ cli 15426 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ioo 13286 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ulm 26262 |
| This theorem is referenced by: knoppndvlem6 36478 knoppf 36496 |
| Copyright terms: Public domain | W3C validator |