| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36527. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem4.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppndvlem4.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppndvlem4.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| knoppndvlem4.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| knoppndvlem4.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem4.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| knoppndvlem4 | ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12796 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12502 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | knoppndvlem4.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 4 | knoppndvlem4.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 5 | knoppndvlem4.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | knoppndvlem4.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 7 | 6 | knoppndvlem3 36507 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 9 | 3, 4, 5, 8 | knoppcnlem8 36493 | . 2 ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ)) |
| 10 | knoppndvlem4.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 11 | seqex 13929 | . . 3 ⊢ seq0( + , (𝐹‘𝐴)) ∈ V | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ∈ V) |
| 13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ) |
| 14 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ) |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 16 | 3, 4, 13, 14, 15 | knoppcnlem7 36492 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))) |
| 17 | 16 | fveq1d 6828 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)‘𝐴) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴)) |
| 18 | eqid 2729 | . . . . 5 ⊢ (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘)) | |
| 19 | fveq2 6826 | . . . . . . 7 ⊢ (𝑣 = 𝐴 → (𝐹‘𝑣) = (𝐹‘𝐴)) | |
| 20 | 19 | seqeq3d 13935 | . . . . . 6 ⊢ (𝑣 = 𝐴 → seq0( + , (𝐹‘𝑣)) = seq0( + , (𝐹‘𝐴))) |
| 21 | 20 | fveq1d 6828 | . . . . 5 ⊢ (𝑣 = 𝐴 → (seq0( + , (𝐹‘𝑣))‘𝑘) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 22 | fvexd 6841 | . . . . 5 ⊢ (𝜑 → (seq0( + , (𝐹‘𝐴))‘𝑘) ∈ V) | |
| 23 | 18, 21, 10, 22 | fvmptd3 6957 | . . . 4 ⊢ (𝜑 → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 25 | 17, 24 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 26 | knoppndvlem4.w | . . 3 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 27 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → (abs‘𝐶) < 1) |
| 28 | 3, 4, 26, 5, 8, 27 | knoppcnlem9 36494 | . 2 ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊) |
| 29 | 1, 2, 9, 10, 12, 25, 28 | ulmclm 26313 | 1 ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 − cmin 11366 -cneg 11367 / cdiv 11796 ℕcn 12147 2c2 12202 ℕ0cn0 12403 (,)cioo 13267 ⌊cfl 13713 seqcseq 13927 ↑cexp 13987 abscabs 15160 ⇝ cli 15410 Σcsu 15612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-ioo 13271 df-ico 13273 df-fz 13430 df-fzo 13577 df-fl 13715 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-limsup 15397 df-clim 15414 df-rlim 15415 df-sum 15613 df-ulm 26303 |
| This theorem is referenced by: knoppndvlem6 36510 knoppf 36528 |
| Copyright terms: Public domain | W3C validator |