| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36522. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem4.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppndvlem4.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppndvlem4.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| knoppndvlem4.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| knoppndvlem4.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem4.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| knoppndvlem4 | ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12835 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12541 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | knoppndvlem4.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 4 | knoppndvlem4.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 5 | knoppndvlem4.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | knoppndvlem4.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 7 | 6 | knoppndvlem3 36502 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 9 | 3, 4, 5, 8 | knoppcnlem8 36488 | . 2 ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ)) |
| 10 | knoppndvlem4.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 11 | seqex 13968 | . . 3 ⊢ seq0( + , (𝐹‘𝐴)) ∈ V | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ∈ V) |
| 13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ) |
| 14 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ) |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 16 | 3, 4, 13, 14, 15 | knoppcnlem7 36487 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))) |
| 17 | 16 | fveq1d 6860 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)‘𝐴) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴)) |
| 18 | eqid 2729 | . . . . 5 ⊢ (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘)) | |
| 19 | fveq2 6858 | . . . . . . 7 ⊢ (𝑣 = 𝐴 → (𝐹‘𝑣) = (𝐹‘𝐴)) | |
| 20 | 19 | seqeq3d 13974 | . . . . . 6 ⊢ (𝑣 = 𝐴 → seq0( + , (𝐹‘𝑣)) = seq0( + , (𝐹‘𝐴))) |
| 21 | 20 | fveq1d 6860 | . . . . 5 ⊢ (𝑣 = 𝐴 → (seq0( + , (𝐹‘𝑣))‘𝑘) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 22 | fvexd 6873 | . . . . 5 ⊢ (𝜑 → (seq0( + , (𝐹‘𝐴))‘𝑘) ∈ V) | |
| 23 | 18, 21, 10, 22 | fvmptd3 6991 | . . . 4 ⊢ (𝜑 → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 25 | 17, 24 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)‘𝐴) = (seq0( + , (𝐹‘𝐴))‘𝑘)) |
| 26 | knoppndvlem4.w | . . 3 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 27 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → (abs‘𝐶) < 1) |
| 28 | 3, 4, 26, 5, 8, 27 | knoppcnlem9 36489 | . 2 ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊) |
| 29 | 1, 2, 9, 10, 12, 25, 28 | ulmclm 26296 | 1 ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 < clt 11208 − cmin 11405 -cneg 11406 / cdiv 11835 ℕcn 12186 2c2 12241 ℕ0cn0 12442 (,)cioo 13306 ⌊cfl 13752 seqcseq 13966 ↑cexp 14026 abscabs 15200 ⇝ cli 15450 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ioo 13310 df-ico 13312 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ulm 26286 |
| This theorem is referenced by: knoppndvlem6 36505 knoppf 36523 |
| Copyright terms: Public domain | W3C validator |