Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem4 Structured version   Visualization version   GIF version

Theorem knoppndvlem4 33967
Description: Lemma for knoppndv 33986. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem4.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem4.a (𝜑𝐴 ∈ ℝ)
knoppndvlem4.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem4.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem4 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem4
Dummy variables 𝑘 𝑣 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12268 . 2 0 = (ℤ‘0)
2 0zd 11981 . 2 (𝜑 → 0 ∈ ℤ)
3 knoppndvlem4.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4 knoppndvlem4.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
5 knoppndvlem4.n . . 3 (𝜑𝑁 ∈ ℕ)
6 knoppndvlem4.c . . . . 5 (𝜑𝐶 ∈ (-1(,)1))
76knoppndvlem3 33966 . . . 4 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
87simpld 498 . . 3 (𝜑𝐶 ∈ ℝ)
93, 4, 5, 8knoppcnlem8 33952 . 2 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
10 knoppndvlem4.a . 2 (𝜑𝐴 ∈ ℝ)
11 seqex 13366 . . 3 seq0( + , (𝐹𝐴)) ∈ V
1211a1i 11 . 2 (𝜑 → seq0( + , (𝐹𝐴)) ∈ V)
135adantr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
148adantr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
15 simpr 488 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
163, 4, 13, 14, 15knoppcnlem7 33951 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
1716fveq1d 6647 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝐴) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴))
18 eqid 2798 . . . . 5 (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))
19 fveq2 6645 . . . . . . 7 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
2019seqeq3d 13372 . . . . . 6 (𝑣 = 𝐴 → seq0( + , (𝐹𝑣)) = seq0( + , (𝐹𝐴)))
2120fveq1d 6647 . . . . 5 (𝑣 = 𝐴 → (seq0( + , (𝐹𝑣))‘𝑘) = (seq0( + , (𝐹𝐴))‘𝑘))
22 fvexd 6660 . . . . 5 (𝜑 → (seq0( + , (𝐹𝐴))‘𝑘) ∈ V)
2318, 21, 10, 22fvmptd3 6768 . . . 4 (𝜑 → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
2423adantr 484 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
2517, 24eqtrd 2833 . 2 ((𝜑𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝐴) = (seq0( + , (𝐹𝐴))‘𝑘))
26 knoppndvlem4.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
277simprd 499 . . 3 (𝜑 → (abs‘𝐶) < 1)
283, 4, 26, 5, 8, 27knoppcnlem9 33953 . 2 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
291, 2, 9, 10, 12, 25, 28ulmclm 24982 1 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  f cof 7387  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  (,)cioo 12726  cfl 13155  seqcseq 13364  cexp 13425  abscabs 14585  cli 14833  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ioo 12730  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ulm 24972
This theorem is referenced by:  knoppndvlem6  33969  knoppf  33987
  Copyright terms: Public domain W3C validator