Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0adddi Structured version   Visualization version   GIF version

Theorem xrge0adddi 30882
Description: Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
xrge0adddi ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵)))

Proof of Theorem xrge0adddi
StepHypRef Expression
1 xrge0adddir 30881 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
2 iccssxr 12907 . . . . 5 (0[,]+∞) ⊆ ℝ*
3 simp1 1137 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ (0[,]+∞))
42, 3sseldi 3876 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ ℝ*)
5 simp2 1138 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
62, 5sseldi 3876 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
74, 6xaddcld 12780 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
8 simp3 1139 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
92, 8sseldi 3876 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ*)
10 xmulcom 12745 . . 3 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (𝐶 ·e (𝐴 +𝑒 𝐵)))
117, 9, 10syl2anc 587 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (𝐶 ·e (𝐴 +𝑒 𝐵)))
12 xmulcom 12745 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) = (𝐶 ·e 𝐴))
134, 9, 12syl2anc 587 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐴 ·e 𝐶) = (𝐶 ·e 𝐴))
14 xmulcom 12745 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) = (𝐶 ·e 𝐵))
156, 9, 14syl2anc 587 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ·e 𝐶) = (𝐶 ·e 𝐵))
1613, 15oveq12d 7191 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵)))
171, 11, 163eqtr3d 2782 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2114  (class class class)co 7173  0cc0 10618  +∞cpnf 10753  *cxr 10755   +𝑒 cxad 12591   ·e cxmu 12592  [,]cicc 12827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-po 5443  df-so 5444  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-1st 7717  df-2nd 7718  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ico 12830  df-icc 12831
This theorem is referenced by:  xrge0slmod  31123
  Copyright terms: Public domain W3C validator