![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0adddi | Structured version Visualization version GIF version |
Description: Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
xrge0adddi | ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0adddir 30233 | . 2 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | |
2 | iccssxr 12551 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
3 | simp1 1170 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ (0[,]+∞)) | |
4 | 2, 3 | sseldi 3825 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ ℝ*) |
5 | simp2 1171 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞)) | |
6 | 2, 5 | sseldi 3825 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*) |
7 | 4, 6 | xaddcld 12426 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
8 | simp3 1172 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞)) | |
9 | 2, 8 | sseldi 3825 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ*) |
10 | xmulcom 12391 | . . 3 ⊢ (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (𝐶 ·e (𝐴 +𝑒 𝐵))) | |
11 | 7, 9, 10 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (𝐶 ·e (𝐴 +𝑒 𝐵))) |
12 | xmulcom 12391 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) = (𝐶 ·e 𝐴)) | |
13 | 4, 9, 12 | syl2anc 579 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐴 ·e 𝐶) = (𝐶 ·e 𝐴)) |
14 | xmulcom 12391 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) = (𝐶 ·e 𝐵)) | |
15 | 6, 9, 14 | syl2anc 579 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ·e 𝐶) = (𝐶 ·e 𝐵)) |
16 | 13, 15 | oveq12d 6928 | . 2 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵))) |
17 | 1, 11, 16 | 3eqtr3d 2869 | 1 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 (class class class)co 6910 0cc0 10259 +∞cpnf 10395 ℝ*cxr 10397 +𝑒 cxad 12237 ·e cxmu 12238 [,]cicc 12473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ico 12476 df-icc 12477 |
This theorem is referenced by: xrge0slmod 30385 |
Copyright terms: Public domain | W3C validator |