ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsppwf1o GIF version

Theorem dvdsppwf1o 15235
Description: A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016.)
Hypothesis
Ref Expression
dvdsppwf1o.f 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃𝑛))
Assertion
Ref Expression
dvdsppwf1o ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
Distinct variable groups:   𝑥,𝑛,𝐴   𝑃,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem dvdsppwf1o
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdsppwf1o.f . 2 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃𝑛))
2 breq1 4037 . . 3 (𝑥 = (𝑃𝑛) → (𝑥 ∥ (𝑃𝐴) ↔ (𝑃𝑛) ∥ (𝑃𝐴)))
3 prmnn 12288 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43adantr 276 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ)
5 elfznn0 10191 . . . 4 (𝑛 ∈ (0...𝐴) → 𝑛 ∈ ℕ0)
6 nnexpcl 10646 . . . 4 ((𝑃 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℕ)
74, 5, 6syl2an 289 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∈ ℕ)
8 prmz 12289 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
98ad2antrr 488 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑃 ∈ ℤ)
105adantl 277 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑛 ∈ ℕ0)
11 elfzuz3 10099 . . . . 5 (𝑛 ∈ (0...𝐴) → 𝐴 ∈ (ℤ𝑛))
1211adantl 277 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝐴 ∈ (ℤ𝑛))
13 dvdsexp 12028 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0𝐴 ∈ (ℤ𝑛)) → (𝑃𝑛) ∥ (𝑃𝐴))
149, 10, 12, 13syl3anc 1249 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∥ (𝑃𝐴))
152, 7, 14elrabd 2922 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
16 simpl 109 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ)
17 elrabi 2917 . . . 4 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} → 𝑚 ∈ ℕ)
18 pccl 12478 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ) → (𝑃 pCnt 𝑚) ∈ ℕ0)
1916, 17, 18syl2an 289 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ∈ ℕ0)
2016adantr 276 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑃 ∈ ℙ)
2117adantl 277 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∈ ℕ)
2221nnzd 9449 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∈ ℤ)
238ad2antrr 488 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑃 ∈ ℤ)
24 simplr 528 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝐴 ∈ ℕ0)
25 zexpcl 10648 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
2623, 24, 25syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃𝐴) ∈ ℤ)
27 breq1 4037 . . . . . . . 8 (𝑥 = 𝑚 → (𝑥 ∥ (𝑃𝐴) ↔ 𝑚 ∥ (𝑃𝐴)))
2827elrab 2920 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} ↔ (𝑚 ∈ ℕ ∧ 𝑚 ∥ (𝑃𝐴)))
2928simprbi 275 . . . . . 6 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} → 𝑚 ∥ (𝑃𝐴))
3029adantl 277 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∥ (𝑃𝐴))
31 pcdvdstr 12506 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑚 ∈ ℤ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝑚 ∥ (𝑃𝐴))) → (𝑃 pCnt 𝑚) ≤ (𝑃 pCnt (𝑃𝐴)))
3220, 22, 26, 30, 31syl13anc 1251 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ≤ (𝑃 pCnt (𝑃𝐴)))
33 pcidlem 12502 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
3433adantr 276 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
3532, 34breqtrd 4060 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ≤ 𝐴)
36 fznn0 10190 . . . 4 (𝐴 ∈ ℕ0 → ((𝑃 pCnt 𝑚) ∈ (0...𝐴) ↔ ((𝑃 pCnt 𝑚) ∈ ℕ0 ∧ (𝑃 pCnt 𝑚) ≤ 𝐴)))
3724, 36syl 14 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → ((𝑃 pCnt 𝑚) ∈ (0...𝐴) ↔ ((𝑃 pCnt 𝑚) ∈ ℕ0 ∧ (𝑃 pCnt 𝑚) ≤ 𝐴)))
3819, 35, 37mpbir2and 946 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ∈ (0...𝐴))
39 oveq2 5931 . . . . . . . . 9 (𝑛 = 𝐴 → (𝑃𝑛) = (𝑃𝐴))
4039breq2d 4046 . . . . . . . 8 (𝑛 = 𝐴 → (𝑚 ∥ (𝑃𝑛) ↔ 𝑚 ∥ (𝑃𝐴)))
4140rspcev 2868 . . . . . . 7 ((𝐴 ∈ ℕ0𝑚 ∥ (𝑃𝐴)) → ∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛))
4224, 30, 41syl2anc 411 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → ∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛))
43 pcprmpw2 12512 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4416, 17, 43syl2an 289 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4542, 44mpbid 147 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))
4645adantrl 478 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))
47 oveq2 5931 . . . . 5 (𝑛 = (𝑃 pCnt 𝑚) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt 𝑚)))
4847eqeq2d 2208 . . . 4 (𝑛 = (𝑃 pCnt 𝑚) → (𝑚 = (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4946, 48syl5ibrcom 157 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑛 = (𝑃 pCnt 𝑚) → 𝑚 = (𝑃𝑛)))
50 elfzelz 10102 . . . . . . 7 (𝑛 ∈ (0...𝐴) → 𝑛 ∈ ℤ)
51 pcid 12503 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℤ) → (𝑃 pCnt (𝑃𝑛)) = 𝑛)
5216, 50, 51syl2an 289 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃 pCnt (𝑃𝑛)) = 𝑛)
5352eqcomd 2202 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑛 = (𝑃 pCnt (𝑃𝑛)))
5453adantrr 479 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → 𝑛 = (𝑃 pCnt (𝑃𝑛)))
55 oveq2 5931 . . . . 5 (𝑚 = (𝑃𝑛) → (𝑃 pCnt 𝑚) = (𝑃 pCnt (𝑃𝑛)))
5655eqeq2d 2208 . . . 4 (𝑚 = (𝑃𝑛) → (𝑛 = (𝑃 pCnt 𝑚) ↔ 𝑛 = (𝑃 pCnt (𝑃𝑛))))
5754, 56syl5ibrcom 157 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑚 = (𝑃𝑛) → 𝑛 = (𝑃 pCnt 𝑚)))
5849, 57impbid 129 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑛 = (𝑃 pCnt 𝑚) ↔ 𝑚 = (𝑃𝑛)))
591, 15, 38, 58f1o2d 6129 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  {crab 2479   class class class wbr 4034  cmpt 4095  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5923  0cc0 7881  cle 8064  cn 8992  0cn0 9251  cz 9328  cuz 9603  ...cfz 10085  cexp 10632  cdvds 11954  cprime 12285   pCnt cpc 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-1o 6475  df-2o 6476  df-er 6593  df-en 6801  df-sup 7051  df-inf 7052  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-xnn0 9315  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-dvds 11955  df-gcd 12131  df-prm 12286  df-pc 12464
This theorem is referenced by:  sgmppw  15238  0sgmppw  15239
  Copyright terms: Public domain W3C validator