![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid1d | GIF version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulid1d | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulid1 7539 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 (class class class)co 5666 ℂcc 7402 1c1 7405 · cmul 7409 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-resscn 7491 ax-1cn 7492 ax-icn 7494 ax-addcl 7495 ax-mulcl 7497 ax-mulcom 7500 ax-mulass 7502 ax-distr 7503 ax-1rid 7506 ax-cnre 7510 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-iota 4993 df-fv 5036 df-ov 5669 |
This theorem is referenced by: muladd11 7669 ltmul1 8123 mulap0 8177 divrecap 8209 diveqap1 8226 conjmulap 8250 apmul1 8309 qapne 9178 divelunit 9473 modqid 9810 q2submod 9846 addmodlteq 9859 expadd 10051 leexp2r 10063 nnlesq 10112 sqoddm1div8 10160 nn0opthlem1d 10182 faclbnd 10203 faclbnd2 10204 faclbnd6 10206 facavg 10208 bcn0 10217 bcn1 10220 hash2iun1dif1 10928 binom11 10934 trireciplem 10948 geosergap 10954 cvgratnnlemnexp 10972 cvgratnnlemmn 10973 efzval 11027 tanaddaplem 11083 tanaddap 11084 cos01gt0 11107 absef 11113 1dvds 11142 bezoutlema 11320 bezoutlemb 11321 gcdmultiple 11341 sqgcd 11350 lcm1 11395 coprmdvds 11406 qredeu 11411 phiprmpw 11530 |
Copyright terms: Public domain | W3C validator |