Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid1d | GIF version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulid1d | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulid1 7892 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 1c1 7750 · cmul 7754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-mulcom 7850 ax-mulass 7852 ax-distr 7853 ax-1rid 7856 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: muladd11 8027 ltmul1 8486 mulap0 8547 divrecap 8580 diveqap1 8597 conjmulap 8621 apmul1 8680 qapne 9573 divelunit 9934 modqid 10280 q2submod 10316 addmodlteq 10329 expadd 10493 leexp2r 10505 nnlesq 10554 sqoddm1div8 10604 nn0opthlem1d 10629 faclbnd 10650 faclbnd2 10651 faclbnd6 10653 facavg 10655 bcn0 10664 bcn1 10667 reccn2ap 11250 hash2iun1dif1 11417 binom11 11423 trireciplem 11437 geosergap 11443 cvgratnnlemnexp 11461 cvgratnnlemmn 11462 fprodsplitdc 11533 efzval 11620 tanaddaplem 11675 tanaddap 11676 cos01gt0 11699 absef 11706 1dvds 11741 bezoutlema 11928 bezoutlemb 11929 gcdmultiple 11949 sqgcd 11958 lcm1 12009 coprmdvds 12020 qredeu 12025 phiprmpw 12150 coprimeprodsq 12185 pc2dvds 12257 sumhashdc 12273 fldivp1 12274 pcfaclem 12275 prmpwdvds 12281 dveflem 13287 efper 13328 tangtx 13359 logdivlti 13402 relogbexpap 13476 rplogbcxp 13481 lgsdir2 13534 2sqlem6 13556 2sqlem8 13559 trilpolemclim 13875 trilpolemisumle 13877 trilpolemeq1 13879 trilpolemlt1 13880 redcwlpolemeq1 13893 nconstwlpolemgt0 13902 |
Copyright terms: Public domain | W3C validator |