| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlcpbl | GIF version | ||
| Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| 2idlcpblrng.x | ⊢ 𝑋 = (Base‘𝑅) |
| 2idlcpblrng.r | ⊢ 𝐸 = (𝑅 ~QG 𝑆) |
| 2idlcpblrng.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
| 2idlcpblrng.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlcpbl | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringrng 13842 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Rng) |
| 3 | simpr 110 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ 𝐼) | |
| 4 | eqid 2206 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 5 | eqid 2206 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 6 | eqid 2206 | . . . . 5 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 7 | 2idlcpblrng.i | . . . . 5 ⊢ 𝐼 = (2Ideal‘𝑅) | |
| 8 | 4, 5, 6, 7 | 2idlelb 14311 | . . . 4 ⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr‘𝑅)))) |
| 9 | 8 | simplbi 274 | . . 3 ⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
| 10 | 4 | lidlsubg 14292 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 11 | 9, 10 | sylan2 286 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 12 | 2idlcpblrng.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
| 13 | 2idlcpblrng.r | . . 3 ⊢ 𝐸 = (𝑅 ~QG 𝑆) | |
| 14 | 2idlcpblrng.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 15 | 12, 13, 7, 14 | 2idlcpblrng 14329 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) |
| 16 | 2, 3, 11, 15 | syl3anc 1250 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 .rcmulr 12954 SubGrpcsubg 13547 ~QG cqg 13549 Rngcrng 13738 Ringcrg 13802 opprcoppr 13873 LIdealclidl 14273 2Idealc2idl 14305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-tpos 6338 df-er 6627 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-sbg 13381 df-subg 13550 df-eqg 13552 df-cmn 13666 df-abl 13667 df-mgp 13727 df-rng 13739 df-ur 13766 df-ring 13804 df-oppr 13874 df-subrg 14025 df-lmod 14095 df-lssm 14159 df-sra 14241 df-rgmod 14242 df-lidl 14275 df-2idl 14306 |
| This theorem is referenced by: qus1 14332 qusrhm 14334 qusmul2 14335 |
| Copyright terms: Public domain | W3C validator |