![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recvalap | GIF version |
Description: Reciprocal expressed with a real denominator. (Contributed by Jim Kingdon, 13-Aug-2021.) |
Ref | Expression |
---|---|
recvalap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 10992 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (∗‘𝐴) ∈ ℂ) |
3 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐴 ∈ ℂ) | |
4 | 2, 3 | mulcomd 8041 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((∗‘𝐴) · 𝐴) = (𝐴 · (∗‘𝐴))) |
5 | absvalsq 11197 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | |
6 | 5 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
7 | 4, 6 | eqtr4d 2229 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((∗‘𝐴) · 𝐴) = ((abs‘𝐴)↑2)) |
8 | abscl 11195 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
9 | 8 | adantr 276 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ) |
10 | 9 | recnd 8048 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℂ) |
11 | 10 | sqcld 10742 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((abs‘𝐴)↑2) ∈ ℂ) |
12 | cjap0 11051 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ (∗‘𝐴) # 0)) | |
13 | 12 | biimpa 296 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (∗‘𝐴) # 0) |
14 | 11, 2, 3, 13 | divmulapd 8831 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((((abs‘𝐴)↑2) / (∗‘𝐴)) = 𝐴 ↔ ((∗‘𝐴) · 𝐴) = ((abs‘𝐴)↑2))) |
15 | 7, 14 | mpbird 167 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (((abs‘𝐴)↑2) / (∗‘𝐴)) = 𝐴) |
16 | 15 | oveq2d 5934 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / (((abs‘𝐴)↑2) / (∗‘𝐴))) = (1 / 𝐴)) |
17 | abs00ap 11206 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) | |
18 | 17 | biimpar 297 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) # 0) |
19 | sqap0 10677 | . . . . 5 ⊢ ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) # 0 ↔ (abs‘𝐴) # 0)) | |
20 | 10, 19 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (((abs‘𝐴)↑2) # 0 ↔ (abs‘𝐴) # 0)) |
21 | 18, 20 | mpbird 167 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((abs‘𝐴)↑2) # 0) |
22 | 11, 2, 21, 13 | recdivapd 8826 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / (((abs‘𝐴)↑2) / (∗‘𝐴))) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) |
23 | 16, 22 | eqtr3d 2228 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 1c1 7873 · cmul 7877 # cap 8600 / cdiv 8691 2c2 9033 ↑cexp 10609 ∗ccj 10983 abscabs 11141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-rp 9720 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |