| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpl0fi | GIF version | ||
| Description: The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpl0.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mpl0.o | ⊢ 𝑂 = (0g‘𝑅) |
| mpl0.z | ⊢ 0 = (0g‘𝑃) |
| mpl0fi.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| mpl0.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Ref | Expression |
|---|---|
| mpl0fi | ⊢ (𝜑 → 0 = (𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ↦ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpl0.z | . 2 ⊢ 0 = (0g‘𝑃) | |
| 2 | mpl0fi.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 3 | mpl0.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 4 | mpl0.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 5 | eqid 2196 | . . . . . 6 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 6 | eqid 2196 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 7 | 4, 5, 6 | mplval2g 14329 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))) |
| 8 | 2, 3, 7 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))) |
| 9 | 8 | fveq2d 5565 | . . 3 ⊢ (𝜑 → (0g‘𝑃) = (0g‘((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃)))) |
| 10 | 5, 4, 6, 2, 3 | mplsubgfi 14335 | . . . 4 ⊢ (𝜑 → (Base‘𝑃) ∈ (SubGrp‘(𝐼 mPwSer 𝑅))) |
| 11 | eqid 2196 | . . . . 5 ⊢ ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃)) = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃)) | |
| 12 | eqid 2196 | . . . . 5 ⊢ (0g‘(𝐼 mPwSer 𝑅)) = (0g‘(𝐼 mPwSer 𝑅)) | |
| 13 | 11, 12 | subg0 13388 | . . . 4 ⊢ ((Base‘𝑃) ∈ (SubGrp‘(𝐼 mPwSer 𝑅)) → (0g‘(𝐼 mPwSer 𝑅)) = (0g‘((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃)))) |
| 14 | 10, 13 | syl 14 | . . 3 ⊢ (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = (0g‘((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃)))) |
| 15 | eqid 2196 | . . . . . 6 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 16 | mpl0.o | . . . . . 6 ⊢ 𝑂 = (0g‘𝑅) | |
| 17 | 5, 2, 3, 15, 16, 12 | psr0 14320 | . . . . 5 ⊢ (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = ({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑂})) |
| 18 | 15 | psrbagfi 14307 | . . . . . . 7 ⊢ (𝐼 ∈ Fin → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = (ℕ0 ↑𝑚 𝐼)) |
| 19 | 2, 18 | syl 14 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = (ℕ0 ↑𝑚 𝐼)) |
| 20 | 19 | xpeq1d 4687 | . . . . 5 ⊢ (𝜑 → ({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑂}) = ((ℕ0 ↑𝑚 𝐼) × {𝑂})) |
| 21 | 17, 20 | eqtrd 2229 | . . . 4 ⊢ (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = ((ℕ0 ↑𝑚 𝐼) × {𝑂})) |
| 22 | fconstmpt 4711 | . . . 4 ⊢ ((ℕ0 ↑𝑚 𝐼) × {𝑂}) = (𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ↦ 𝑂) | |
| 23 | 21, 22 | eqtrdi 2245 | . . 3 ⊢ (𝜑 → (0g‘(𝐼 mPwSer 𝑅)) = (𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ↦ 𝑂)) |
| 24 | 9, 14, 23 | 3eqtr2d 2235 | . 2 ⊢ (𝜑 → (0g‘𝑃) = (𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ↦ 𝑂)) |
| 25 | 1, 24 | eqtrid 2241 | 1 ⊢ (𝜑 → 0 = (𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ↦ 𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {crab 2479 {csn 3623 ↦ cmpt 4095 × cxp 4662 ◡ccnv 4663 “ cima 4667 ‘cfv 5259 (class class class)co 5925 ↑𝑚 cmap 6716 Fincfn 6808 ℕcn 9009 ℕ0cn0 9268 Basecbs 12705 ↾s cress 12706 0gc0g 12960 Grpcgrp 13204 SubGrpcsubg 13375 mPwSer cmps 14295 mPoly cmpl 14296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-1o 6483 df-er 6601 df-map 6718 df-ixp 6767 df-en 6809 df-fin 6811 df-sup 7059 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-z 9346 df-dec 9477 df-uz 9621 df-fz 10103 df-struct 12707 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-mulr 12796 df-sca 12798 df-vsca 12799 df-ip 12800 df-tset 12801 df-ple 12802 df-ds 12804 df-hom 12806 df-cco 12807 df-rest 12945 df-topn 12946 df-0g 12962 df-topgen 12964 df-pt 12965 df-prds 12971 df-pws 12994 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-grp 13207 df-minusg 13208 df-subg 13378 df-psr 14297 df-mplcoe 14298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |