![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fsumshft | GIF version |
Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.) |
Ref | Expression |
---|---|
fsumrev.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
fsumrev.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fsumrev.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumrev.4 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumshft.5 | ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsumshft | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumshft.5 | . 2 ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) | |
2 | fsumrev.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | fsumrev.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
4 | 2, 3 | zaddcld 8971 | . . 3 ⊢ (𝜑 → (𝑀 + 𝐾) ∈ ℤ) |
5 | fsumrev.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
6 | 5, 3 | zaddcld 8971 | . . 3 ⊢ (𝜑 → (𝑁 + 𝐾) ∈ ℤ) |
7 | 4, 6 | fzfigd 9987 | . 2 ⊢ (𝜑 → ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∈ Fin) |
8 | 3, 2, 5 | mptfzshft 11001 | . 2 ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
9 | simpr 109 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | |
10 | elfzelz 9589 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ) | |
11 | 10 | adantl 272 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ) |
12 | 3 | adantr 271 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ) |
13 | 11, 12 | zsubcld 8972 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ ℤ) |
14 | oveq1 5697 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝑗 − 𝐾) = (𝑘 − 𝐾)) | |
15 | eqid 2095 | . . . 4 ⊢ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) | |
16 | 14, 15 | fvmptg 5415 | . . 3 ⊢ ((𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ (𝑘 − 𝐾) ∈ ℤ) → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾))‘𝑘) = (𝑘 − 𝐾)) |
17 | 9, 13, 16 | syl2anc 404 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾))‘𝑘) = (𝑘 − 𝐾)) |
18 | fsumrev.4 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
19 | 1, 7, 8, 17, 18 | fsumf1o 10949 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ↦ cmpt 3921 ‘cfv 5049 (class class class)co 5690 ℂcc 7445 + caddc 7450 − cmin 7750 ℤcz 8848 ...cfz 9573 Σcsu 10912 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 ax-arch 7561 ax-caucvg 7562 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-if 3414 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-isom 5058 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-irdg 6173 df-frec 6194 df-1o 6219 df-oadd 6223 df-er 6332 df-en 6538 df-dom 6539 df-fin 6540 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-2 8579 df-3 8580 df-4 8581 df-n0 8772 df-z 8849 df-uz 9119 df-q 9204 df-rp 9234 df-fz 9574 df-fzo 9703 df-iseq 10002 df-seq3 10003 df-exp 10086 df-ihash 10315 df-cj 10407 df-re 10408 df-im 10409 df-rsqrt 10562 df-abs 10563 df-clim 10838 df-sumdc 10913 |
This theorem is referenced by: fsumshftm 11004 binomlem 11042 cvgratnnlemsumlt 11087 |
Copyright terms: Public domain | W3C validator |