ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abscxp GIF version

Theorem abscxp 14002
Description: Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
abscxp ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (abs‘(𝐴𝑐𝐵)) = (𝐴𝑐(ℜ‘𝐵)))

Proof of Theorem abscxp
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2 relogcl 13950 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
32recnd 7976 . . . . . 6 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
43adantr 276 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (log‘𝐴) ∈ ℂ)
51, 4mulcld 7968 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐵 · (log‘𝐴)) ∈ ℂ)
6 absef 11761 . . . 4 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
75, 6syl 14 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
8 remul2 10866 . . . . . 6 (((log‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘((log‘𝐴) · 𝐵)) = ((log‘𝐴) · (ℜ‘𝐵)))
92, 8sylan 283 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (ℜ‘((log‘𝐴) · 𝐵)) = ((log‘𝐴) · (ℜ‘𝐵)))
101, 4mulcomd 7969 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐵 · (log‘𝐴)) = ((log‘𝐴) · 𝐵))
1110fveq2d 5515 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (ℜ‘(𝐵 · (log‘𝐴))) = (ℜ‘((log‘𝐴) · 𝐵)))
12 recl 10846 . . . . . . . 8 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1312adantl 277 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1413recnd 7976 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
1514, 4mulcomd 7969 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → ((ℜ‘𝐵) · (log‘𝐴)) = ((log‘𝐴) · (ℜ‘𝐵)))
169, 11, 153eqtr4d 2220 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (ℜ‘(𝐵 · (log‘𝐴))) = ((ℜ‘𝐵) · (log‘𝐴)))
1716fveq2d 5515 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘𝐴))))
187, 17eqtrd 2210 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘𝐴))))
19 rpcxpef 13982 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
2019fveq2d 5515 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
21 rpcxpef 13982 . . 3 ((𝐴 ∈ ℝ+ ∧ (ℜ‘𝐵) ∈ ℂ) → (𝐴𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘𝐴))))
2214, 21syldan 282 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘𝐴))))
2318, 20, 223eqtr4d 2220 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (abs‘(𝐴𝑐𝐵)) = (𝐴𝑐(ℜ‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cfv 5212  (class class class)co 5869  cc 7800  cr 7801   · cmul 7807  +crp 9640  cre 10833  abscabs 10990  expce 11634  logclog 13944  𝑐ccxp 13945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-of 6077  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-map 6644  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-e 11641  df-sin 11642  df-cos 11643  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793  df-relog 13946  df-rpcxp 13947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator