MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddlid Structured version   Visualization version   GIF version

Theorem xaddlid 13251
Description: Extended real version of addlid 11411. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddlid (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴)

Proof of Theorem xaddlid
StepHypRef Expression
1 0xr 11275 . . 3 0 ∈ ℝ*
2 xaddcom 13249 . . 3 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 +𝑒 𝐴) = (𝐴 +𝑒 0))
31, 2mpan 690 . 2 (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = (𝐴 +𝑒 0))
4 xaddrid 13250 . 2 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
53, 4eqtrd 2769 1 (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  (class class class)co 7400  0cc0 11122  *cxr 11261   +𝑒 cxad 13119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-po 5559  df-so 5560  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-xadd 13122
This theorem is referenced by:  xaddge0  13267  xsubge0  13270  xadddi2  13306  xrs1mnd  21359  xrs10  21360  imasdsf1olem  24299  stdbdxmet  24441  xaddeq0  32666  xrs0  32936  xrsmulgzz  32939  xrge0adddir  32951  xrge0npcan  32953  lvecendof1f1o  33608  metideq  33853  esumrnmpt2  34028  esumpfinvallem  34034  0elcarsg  34268  carsgclctunlem3  34281  xaddlidd  45281  sge0tsms  46345  meadjun  46427  caragencmpl  46500
  Copyright terms: Public domain W3C validator