| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddlid | Structured version Visualization version GIF version | ||
| Description: Extended real version of addlid 11411. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddlid | ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11275 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | xaddcom 13249 | . . 3 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 +𝑒 𝐴) = (𝐴 +𝑒 0)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = (𝐴 +𝑒 0)) |
| 4 | xaddrid 13250 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | |
| 5 | 3, 4 | eqtrd 2769 | 1 ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7400 0cc0 11122 ℝ*cxr 11261 +𝑒 cxad 13119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-xadd 13122 |
| This theorem is referenced by: xaddge0 13267 xsubge0 13270 xadddi2 13306 xrs1mnd 21359 xrs10 21360 imasdsf1olem 24299 stdbdxmet 24441 xaddeq0 32666 xrs0 32936 xrsmulgzz 32939 xrge0adddir 32951 xrge0npcan 32953 lvecendof1f1o 33608 metideq 33853 esumrnmpt2 34028 esumpfinvallem 34034 0elcarsg 34268 carsgclctunlem3 34281 xaddlidd 45281 sge0tsms 46345 meadjun 46427 caragencmpl 46500 |
| Copyright terms: Public domain | W3C validator |