MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subidi Structured version   Visualization version   GIF version

Theorem subidi 11567
Description: Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.)
Hypothesis
Ref Expression
negidi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
subidi (𝐴𝐴) = 0

Proof of Theorem subidi
StepHypRef Expression
1 negidi.1 . 2 𝐴 ∈ ℂ
2 subid 11515 . 2 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
31, 2ax-mp 5 1 (𝐴𝐴) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  (class class class)co 7424  cc 11142  0cc0 11144  cmin 11480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-ltxr 11289  df-sub 11482
This theorem is referenced by:  0reALT  11593  1m1e0  12320  0m0e0  12368  divalglem2  16377  divalglem9  16383  psgnunilem2  19455  psdmul  22095  pcoass  24969  sincosq1sgn  26451  resinf1o  26488  acos1  26845  bposlem2  27236  clwlkclwwlklem2a4  29825  2clwwlk2  30176  numclwlk1lem1  30197  bcseqi  30948  lnfn0i  31870  ballotth  34162  areaquad  42647  wallispilem4  45458  fouriersw  45621  2t6m3t4e0  47463  zlmodzxzequa  47615  zlmodzxzequap  47618
  Copyright terms: Public domain W3C validator