HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopsubmuli Structured version   Visualization version   GIF version

Theorem lnopsubmuli 31922
Description: Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopsubmuli ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 (𝐴 · 𝐶))) = ((𝑇𝐵) − (𝐴 · (𝑇𝐶))))

Proof of Theorem lnopsubmuli
StepHypRef Expression
1 hvmulcl 30960 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
2 lnopl.1 . . . . . 6 𝑇 ∈ LinOp
32lnopsubi 31921 . . . . 5 ((𝐵 ∈ ℋ ∧ (𝐴 · 𝐶) ∈ ℋ) → (𝑇‘(𝐵 (𝐴 · 𝐶))) = ((𝑇𝐵) − (𝑇‘(𝐴 · 𝐶))))
41, 3sylan2 593 . . . 4 ((𝐵 ∈ ℋ ∧ (𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ)) → (𝑇‘(𝐵 (𝐴 · 𝐶))) = ((𝑇𝐵) − (𝑇‘(𝐴 · 𝐶))))
543impb 1114 . . 3 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 (𝐴 · 𝐶))) = ((𝑇𝐵) − (𝑇‘(𝐴 · 𝐶))))
653com12 1123 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 (𝐴 · 𝐶))) = ((𝑇𝐵) − (𝑇‘(𝐴 · 𝐶))))
72lnopmuli 31919 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐴 · 𝐶)) = (𝐴 · (𝑇𝐶)))
87oveq2d 7429 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝑇𝐵) − (𝑇‘(𝐴 · 𝐶))) = ((𝑇𝐵) − (𝐴 · (𝑇𝐶))))
983adant2 1131 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇𝐵) − (𝑇‘(𝐴 · 𝐶))) = ((𝑇𝐵) − (𝐴 · (𝑇𝐶))))
106, 9eqtrd 2769 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 (𝐴 · 𝐶))) = ((𝑇𝐵) − (𝐴 · (𝑇𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  cc 11135  chba 30866   · csm 30868   cmv 30872  LinOpclo 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-hilex 30946  ax-hfvadd 30947  ax-hvass 30949  ax-hv0cl 30950  ax-hvaddid 30951  ax-hfvmul 30952  ax-hvmulid 30953  ax-hvdistr2 30956  ax-hvmul0 30957
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-sub 11476  df-neg 11477  df-hvsub 30918  df-lnop 31788
This theorem is referenced by:  lnopeq0lem1  31952  lnophmlem2  31964
  Copyright terms: Public domain W3C validator