Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modmulmodr | Structured version Visualization version GIF version |
Description: The product of an integer and a real number modulo a positive real number equals the product of the integer and the real number modulo the positive real number. (Contributed by Alexander van der Vekens, 9-Jul-2021.) |
Ref | Expression |
---|---|
modmulmodr | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12429 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
2 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ) |
3 | simp2 1137 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐵 ∈ ℝ) | |
4 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+) | |
5 | 3, 4 | modcld 13700 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℝ) |
6 | 5 | recnd 11108 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℂ) |
7 | 2, 6 | mulcomd 11101 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝑀)) = ((𝐵 mod 𝑀) · 𝐴)) |
8 | 7 | oveq1d 7356 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = (((𝐵 mod 𝑀) · 𝐴) mod 𝑀)) |
9 | modmulmod 13761 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐴) mod 𝑀) = ((𝐵 · 𝐴) mod 𝑀)) | |
10 | 9 | 3com12 1123 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐴) mod 𝑀) = ((𝐵 · 𝐴) mod 𝑀)) |
11 | recn 11066 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
12 | 1, 11 | anim12ci 615 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
13 | 12 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
14 | mulcom 11062 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = (𝐴 · 𝐵)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐴) = (𝐴 · 𝐵)) |
16 | 15 | oveq1d 7356 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐴) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) |
17 | 8, 10, 16 | 3eqtrd 2781 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 (class class class)co 7341 ℂcc 10974 ℝcr 10975 · cmul 10981 ℤcz 12424 ℝ+crp 12835 mod cmo 13694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-sup 9303 df-inf 9304 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-fl 13617 df-mod 13695 |
This theorem is referenced by: gausslemma2dlem6 26625 fpprwppr 45609 |
Copyright terms: Public domain | W3C validator |