Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvc Structured version   Visualization version   GIF version

Theorem signstfvc 30972
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvc ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐺(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvc
Dummy variables 𝑒 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6878 . . . . . . . 8 (𝑔 = ∅ → (𝐹 ++ 𝑔) = (𝐹 ++ ∅))
21fveq2d 6408 . . . . . . 7 (𝑔 = ∅ → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ ∅)))
32fveq1d 6406 . . . . . 6 (𝑔 = ∅ → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ ∅))‘𝑁))
43eqeq1d 2808 . . . . 5 (𝑔 = ∅ → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁)))
54imbi2d 331 . . . 4 (𝑔 = ∅ → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6 oveq2 6878 . . . . . . . 8 (𝑔 = 𝑒 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝑒))
76fveq2d 6408 . . . . . . 7 (𝑔 = 𝑒 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝑒)))
87fveq1d 6406 . . . . . 6 (𝑔 = 𝑒 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
98eqeq1d 2808 . . . . 5 (𝑔 = 𝑒 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)))
109imbi2d 331 . . . 4 (𝑔 = 𝑒 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))))
11 oveq2 6878 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝐹 ++ 𝑔) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
1211fveq2d 6408 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
1312fveq1d 6406 . . . . . 6 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
1413eqeq1d 2808 . . . . 5 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
1514imbi2d 331 . . . 4 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
16 oveq2 6878 . . . . . . . 8 (𝑔 = 𝐺 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝐺))
1716fveq2d 6408 . . . . . . 7 (𝑔 = 𝐺 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝐺)))
1817fveq1d 6406 . . . . . 6 (𝑔 = 𝐺 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝐺))‘𝑁))
1918eqeq1d 2808 . . . . 5 (𝑔 = 𝐺 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
2019imbi2d 331 . . . 4 (𝑔 = 𝐺 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))))
21 ccatrid 13580 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ∅) = 𝐹)
2221fveq2d 6408 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇‘(𝐹 ++ ∅)) = (𝑇𝐹))
2322fveq1d 6406 . . . . 5 (𝐹 ∈ Word ℝ → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
2423adantr 468 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
25 simprl 778 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝐹 ∈ Word ℝ)
26 simpll 774 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑒 ∈ Word ℝ)
27 simplr 776 . . . . . . . . . . . . 13 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑘 ∈ ℝ)
2827s1cld 13594 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ⟨“𝑘”⟩ ∈ Word ℝ)
29 ccatass 13581 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ ⟨“𝑘”⟩ ∈ Word ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
3025, 26, 28, 29syl3anc 1483 . . . . . . . . . . 11 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
3130fveq2d 6408 . . . . . . . . . 10 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
3231fveq1d 6406 . . . . . . . . 9 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
33 ccatcl 13567 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (𝐹 ++ 𝑒) ∈ Word ℝ)
3425, 26, 33syl2anc 575 . . . . . . . . . 10 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (𝐹 ++ 𝑒) ∈ Word ℝ)
35 lencl 13531 . . . . . . . . . . . . . . 15 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
3625, 35syl 17 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℕ0)
3736nn0zd 11742 . . . . . . . . . . . . 13 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℤ)
38 lencl 13531 . . . . . . . . . . . . . . 15 ((𝐹 ++ 𝑒) ∈ Word ℝ → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
3934, 38syl 17 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
4039nn0zd 11742 . . . . . . . . . . . . 13 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘(𝐹 ++ 𝑒)) ∈ ℤ)
4136nn0red 11614 . . . . . . . . . . . . . . 15 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℝ)
42 lencl 13531 . . . . . . . . . . . . . . . 16 (𝑒 ∈ Word ℝ → (♯‘𝑒) ∈ ℕ0)
4326, 42syl 17 . . . . . . . . . . . . . . 15 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝑒) ∈ ℕ0)
44 nn0addge1 11601 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℝ ∧ (♯‘𝑒) ∈ ℕ0) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
4541, 43, 44syl2anc 575 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
46 ccatlen 13568 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒)))
4725, 26, 46syl2anc 575 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒)))
4845, 47breqtrrd 4872 . . . . . . . . . . . . 13 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒)))
49 eluz2 11906 . . . . . . . . . . . . 13 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) ↔ ((♯‘𝐹) ∈ ℤ ∧ (♯‘(𝐹 ++ 𝑒)) ∈ ℤ ∧ (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒))))
5037, 40, 48, 49syl3anbrc 1436 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)))
51 fzoss2 12716 . . . . . . . . . . . 12 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5250, 51syl 17 . . . . . . . . . . 11 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
53 simprr 780 . . . . . . . . . . 11 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑁 ∈ (0..^(♯‘𝐹)))
5452, 53sseldd 3799 . . . . . . . . . 10 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒))))
55 signsv.p . . . . . . . . . . 11 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
56 signsv.w . . . . . . . . . . 11 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
57 signsv.t . . . . . . . . . . 11 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
58 signsv.v . . . . . . . . . . 11 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
5955, 56, 57, 58signstfvp 30969 . . . . . . . . . 10 (((𝐹 ++ 𝑒) ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6034, 27, 54, 59syl3anc 1483 . . . . . . . . 9 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6132, 60eqtr3d 2842 . . . . . . . 8 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6261adantr 468 . . . . . . 7 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
63 simpr 473 . . . . . . 7 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))
6462, 63eqtrd 2840 . . . . . 6 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))
6564exp31 408 . . . . 5 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6665a2d 29 . . . 4 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
675, 10, 15, 20, 24, 66wrdind 13696 . . 3 (𝐺 ∈ Word ℝ → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
68673impib 1137 . 2 ((𝐺 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
69683com12 1146 1 ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wss 3769  c0 4116  ifcif 4279  {cpr 4372  {ctp 4374  cop 4376   class class class wbr 4844  cmpt 4923  cfv 6097  (class class class)co 6870  cmpt2 6872  cr 10216  0cc0 10217  1c1 10218   + caddc 10220  cle 10356  cmin 10547  -cneg 10548  0cn0 11555  cz 11639  cuz 11900  ...cfz 12545  ..^cfzo 12685  chash 13333  Word cword 13498   ++ cconcat 13500  ⟨“cs1 13501  sgncsgn 14045  Σcsu 14635  ndxcnx 16061  Basecbs 16064  +gcplusg 16149   Σg cgsu 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-oadd 7796  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-card 9044  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-n0 11556  df-xnn0 11626  df-z 11640  df-uz 11901  df-fz 12546  df-fzo 12686  df-hash 13334  df-word 13506  df-lsw 13507  df-concat 13508  df-s1 13509  df-substr 13510
This theorem is referenced by:  signstres  30973
  Copyright terms: Public domain W3C validator