Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvc Structured version   Visualization version   GIF version

Theorem signstfvc 30985
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvc ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐺(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvc
Dummy variables 𝑒 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6800 . . . . . . . 8 (𝑔 = ∅ → (𝐹 ++ 𝑔) = (𝐹 ++ ∅))
21fveq2d 6336 . . . . . . 7 (𝑔 = ∅ → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ ∅)))
32fveq1d 6334 . . . . . 6 (𝑔 = ∅ → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ ∅))‘𝑁))
43eqeq1d 2772 . . . . 5 (𝑔 = ∅ → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁)))
54imbi2d 329 . . . 4 (𝑔 = ∅ → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6 oveq2 6800 . . . . . . . 8 (𝑔 = 𝑒 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝑒))
76fveq2d 6336 . . . . . . 7 (𝑔 = 𝑒 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝑒)))
87fveq1d 6334 . . . . . 6 (𝑔 = 𝑒 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
98eqeq1d 2772 . . . . 5 (𝑔 = 𝑒 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)))
109imbi2d 329 . . . 4 (𝑔 = 𝑒 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))))
11 oveq2 6800 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝐹 ++ 𝑔) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
1211fveq2d 6336 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
1312fveq1d 6334 . . . . . 6 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
1413eqeq1d 2772 . . . . 5 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
1514imbi2d 329 . . . 4 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
16 oveq2 6800 . . . . . . . 8 (𝑔 = 𝐺 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝐺))
1716fveq2d 6336 . . . . . . 7 (𝑔 = 𝐺 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝐺)))
1817fveq1d 6334 . . . . . 6 (𝑔 = 𝐺 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝐺))‘𝑁))
1918eqeq1d 2772 . . . . 5 (𝑔 = 𝐺 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
2019imbi2d 329 . . . 4 (𝑔 = 𝐺 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))))
21 ccatrid 13568 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ∅) = 𝐹)
2221fveq2d 6336 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇‘(𝐹 ++ ∅)) = (𝑇𝐹))
2322fveq1d 6334 . . . . 5 (𝐹 ∈ Word ℝ → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
2423adantr 466 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
25 simprl 746 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝐹 ∈ Word ℝ)
26 simpll 742 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑒 ∈ Word ℝ)
27 simplr 744 . . . . . . . . . . . . 13 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑘 ∈ ℝ)
2827s1cld 13582 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ⟨“𝑘”⟩ ∈ Word ℝ)
29 ccatass 13569 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ ⟨“𝑘”⟩ ∈ Word ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
3025, 26, 28, 29syl3anc 1475 . . . . . . . . . . 11 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
3130fveq2d 6336 . . . . . . . . . 10 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
3231fveq1d 6334 . . . . . . . . 9 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
33 ccatcl 13555 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (𝐹 ++ 𝑒) ∈ Word ℝ)
3425, 26, 33syl2anc 565 . . . . . . . . . 10 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (𝐹 ++ 𝑒) ∈ Word ℝ)
35 lencl 13519 . . . . . . . . . . . . . . 15 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
3625, 35syl 17 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℕ0)
3736nn0zd 11681 . . . . . . . . . . . . 13 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℤ)
38 lencl 13519 . . . . . . . . . . . . . . 15 ((𝐹 ++ 𝑒) ∈ Word ℝ → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
3934, 38syl 17 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
4039nn0zd 11681 . . . . . . . . . . . . 13 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘(𝐹 ++ 𝑒)) ∈ ℤ)
4136nn0red 11553 . . . . . . . . . . . . . . 15 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℝ)
42 lencl 13519 . . . . . . . . . . . . . . . 16 (𝑒 ∈ Word ℝ → (♯‘𝑒) ∈ ℕ0)
4326, 42syl 17 . . . . . . . . . . . . . . 15 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝑒) ∈ ℕ0)
44 nn0addge1 11540 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℝ ∧ (♯‘𝑒) ∈ ℕ0) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
4541, 43, 44syl2anc 565 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
46 ccatlen 13556 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒)))
4725, 26, 46syl2anc 565 . . . . . . . . . . . . . 14 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒)))
4845, 47breqtrrd 4812 . . . . . . . . . . . . 13 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒)))
49 eluz2 11893 . . . . . . . . . . . . 13 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) ↔ ((♯‘𝐹) ∈ ℤ ∧ (♯‘(𝐹 ++ 𝑒)) ∈ ℤ ∧ (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒))))
5037, 40, 48, 49syl3anbrc 1427 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)))
51 fzoss2 12703 . . . . . . . . . . . 12 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5250, 51syl 17 . . . . . . . . . . 11 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
53 simprr 748 . . . . . . . . . . 11 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑁 ∈ (0..^(♯‘𝐹)))
5452, 53sseldd 3751 . . . . . . . . . 10 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒))))
55 signsv.p . . . . . . . . . . 11 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
56 signsv.w . . . . . . . . . . 11 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
57 signsv.t . . . . . . . . . . 11 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
58 signsv.v . . . . . . . . . . 11 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
5955, 56, 57, 58signstfvp 30982 . . . . . . . . . 10 (((𝐹 ++ 𝑒) ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6034, 27, 54, 59syl3anc 1475 . . . . . . . . 9 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6132, 60eqtr3d 2806 . . . . . . . 8 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6261adantr 466 . . . . . . 7 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
63 simpr 471 . . . . . . 7 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))
6462, 63eqtrd 2804 . . . . . 6 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹)))) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))
6564exp31 406 . . . . 5 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6665a2d 29 . . . 4 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
675, 10, 15, 20, 24, 66wrdind 13684 . . 3 (𝐺 ∈ Word ℝ → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
68673impib 1107 . 2 ((𝐺 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
69683com12 1116 1 ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wss 3721  c0 4061  ifcif 4223  {cpr 4316  {ctp 4318  cop 4320   class class class wbr 4784  cmpt 4861  cfv 6031  (class class class)co 6792  cmpt2 6794  cr 10136  0cc0 10137  1c1 10138   + caddc 10140  cle 10276  cmin 10467  -cneg 10468  0cn0 11493  cz 11578  cuz 11887  ...cfz 12532  ..^cfzo 12672  chash 13320  Word cword 13486   ++ cconcat 13488  ⟨“cs1 13489  sgncsgn 14033  Σcsu 14623  ndxcnx 16060  Basecbs 16063  +gcplusg 16148   Σg cgsu 16308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-s1 13497  df-substr 13498
This theorem is referenced by:  signstres  30986
  Copyright terms: Public domain W3C validator