Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvc Structured version   Visualization version   GIF version

Theorem signstfvc 32453
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvc ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐺(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvc
Dummy variables 𝑒 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . . . . 8 (𝑔 = ∅ → (𝐹 ++ 𝑔) = (𝐹 ++ ∅))
21fveq2d 6760 . . . . . . 7 (𝑔 = ∅ → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ ∅)))
32fveq1d 6758 . . . . . 6 (𝑔 = ∅ → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ ∅))‘𝑁))
43eqeq1d 2740 . . . . 5 (𝑔 = ∅ → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁)))
54imbi2d 340 . . . 4 (𝑔 = ∅ → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6 oveq2 7263 . . . . . . . 8 (𝑔 = 𝑒 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝑒))
76fveq2d 6760 . . . . . . 7 (𝑔 = 𝑒 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝑒)))
87fveq1d 6758 . . . . . 6 (𝑔 = 𝑒 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
98eqeq1d 2740 . . . . 5 (𝑔 = 𝑒 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)))
109imbi2d 340 . . . 4 (𝑔 = 𝑒 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))))
11 oveq2 7263 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝐹 ++ 𝑔) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
1211fveq2d 6760 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
1312fveq1d 6758 . . . . . 6 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
1413eqeq1d 2740 . . . . 5 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
1514imbi2d 340 . . . 4 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
16 oveq2 7263 . . . . . . . 8 (𝑔 = 𝐺 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝐺))
1716fveq2d 6760 . . . . . . 7 (𝑔 = 𝐺 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝐺)))
1817fveq1d 6758 . . . . . 6 (𝑔 = 𝐺 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝐺))‘𝑁))
1918eqeq1d 2740 . . . . 5 (𝑔 = 𝐺 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
2019imbi2d 340 . . . 4 (𝑔 = 𝐺 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))))
21 ccatrid 14220 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ∅) = 𝐹)
2221fveq2d 6760 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇‘(𝐹 ++ ∅)) = (𝑇𝐹))
2322fveq1d 6758 . . . . 5 (𝐹 ∈ Word ℝ → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
2423adantr 480 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
25 s1cl 14235 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → ⟨“𝑘”⟩ ∈ Word ℝ)
26 ccatass 14221 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ ⟨“𝑘”⟩ ∈ Word ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
2725, 26syl3an3 1163 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
28273expb 1118 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
2928adantlr 711 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
3029fveq2d 6760 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
3130fveq1d 6758 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
32 ccatcl 14205 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (𝐹 ++ 𝑒) ∈ Word ℝ)
3332ad2ant2r 743 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (𝐹 ++ 𝑒) ∈ Word ℝ)
34 simprr 769 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑘 ∈ ℝ)
35 lencl 14164 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
3635nn0zd 12353 . . . . . . . . . . . . . . 15 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
3736adantr 480 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ∈ ℤ)
38 lencl 14164 . . . . . . . . . . . . . . . 16 ((𝐹 ++ 𝑒) ∈ Word ℝ → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
3932, 38syl 17 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
4039nn0zd 12353 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ ℤ)
4135nn0red 12224 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℝ)
42 lencl 14164 . . . . . . . . . . . . . . . 16 (𝑒 ∈ Word ℝ → (♯‘𝑒) ∈ ℕ0)
43 nn0addge1 12209 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℝ ∧ (♯‘𝑒) ∈ ℕ0) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
4441, 42, 43syl2an 595 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
45 ccatlen 14206 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒)))
4644, 45breqtrrd 5098 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒)))
47 eluz2 12517 . . . . . . . . . . . . . 14 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) ↔ ((♯‘𝐹) ∈ ℤ ∧ (♯‘(𝐹 ++ 𝑒)) ∈ ℤ ∧ (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒))))
4837, 40, 46, 47syl3anbrc 1341 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)))
49 fzoss2 13343 . . . . . . . . . . . . 13 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5150ad2ant2r 743 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
52 simplr 765 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑁 ∈ (0..^(♯‘𝐹)))
5351, 52sseldd 3918 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒))))
54 signsv.p . . . . . . . . . . 11 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
55 signsv.w . . . . . . . . . . 11 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
56 signsv.t . . . . . . . . . . 11 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
57 signsv.v . . . . . . . . . . 11 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
5854, 55, 56, 57signstfvp 32450 . . . . . . . . . 10 (((𝐹 ++ 𝑒) ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
5933, 34, 53, 58syl3anc 1369 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6031, 59eqtr3d 2780 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
61 id 22 . . . . . . . 8 (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))
6260, 61sylan9eq 2799 . . . . . . 7 ((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))
6362ex 412 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
6463expcom 413 . . . . 5 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6564a2d 29 . . . 4 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
665, 10, 15, 20, 24, 65wrdind 14363 . . 3 (𝐺 ∈ Word ℝ → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
67663impib 1114 . 2 ((𝐺 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
68673com12 1121 1 ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wss 3883  c0 4253  ifcif 4456  {cpr 4560  {ctp 4562  cop 4564   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  -cneg 11136  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  sgncsgn 14725  Σcsu 15325  ndxcnx 16822  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312
This theorem is referenced by:  signstres  32454
  Copyright terms: Public domain W3C validator