Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvc Structured version   Visualization version   GIF version

Theorem signstfvc 31730
 Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvc ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐺(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvc
Dummy variables 𝑒 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7156 . . . . . . . 8 (𝑔 = ∅ → (𝐹 ++ 𝑔) = (𝐹 ++ ∅))
21fveq2d 6671 . . . . . . 7 (𝑔 = ∅ → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ ∅)))
32fveq1d 6669 . . . . . 6 (𝑔 = ∅ → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ ∅))‘𝑁))
43eqeq1d 2828 . . . . 5 (𝑔 = ∅ → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁)))
54imbi2d 342 . . . 4 (𝑔 = ∅ → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6 oveq2 7156 . . . . . . . 8 (𝑔 = 𝑒 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝑒))
76fveq2d 6671 . . . . . . 7 (𝑔 = 𝑒 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝑒)))
87fveq1d 6669 . . . . . 6 (𝑔 = 𝑒 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
98eqeq1d 2828 . . . . 5 (𝑔 = 𝑒 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)))
109imbi2d 342 . . . 4 (𝑔 = 𝑒 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))))
11 oveq2 7156 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝐹 ++ 𝑔) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
1211fveq2d 6671 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
1312fveq1d 6669 . . . . . 6 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
1413eqeq1d 2828 . . . . 5 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
1514imbi2d 342 . . . 4 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
16 oveq2 7156 . . . . . . . 8 (𝑔 = 𝐺 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝐺))
1716fveq2d 6671 . . . . . . 7 (𝑔 = 𝐺 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝐺)))
1817fveq1d 6669 . . . . . 6 (𝑔 = 𝐺 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝐺))‘𝑁))
1918eqeq1d 2828 . . . . 5 (𝑔 = 𝐺 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
2019imbi2d 342 . . . 4 (𝑔 = 𝐺 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))))
21 ccatrid 13931 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ∅) = 𝐹)
2221fveq2d 6671 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇‘(𝐹 ++ ∅)) = (𝑇𝐹))
2322fveq1d 6669 . . . . 5 (𝐹 ∈ Word ℝ → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
2423adantr 481 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
25 s1cl 13946 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → ⟨“𝑘”⟩ ∈ Word ℝ)
26 ccatass 13932 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ ⟨“𝑘”⟩ ∈ Word ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
2725, 26syl3an3 1159 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
28273expb 1114 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
2928adantlr 711 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
3029fveq2d 6671 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
3130fveq1d 6669 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
32 ccatcl 13916 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (𝐹 ++ 𝑒) ∈ Word ℝ)
3332ad2ant2r 743 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (𝐹 ++ 𝑒) ∈ Word ℝ)
34 simprr 769 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑘 ∈ ℝ)
35 lencl 13873 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
3635nn0zd 12074 . . . . . . . . . . . . . . 15 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
3736adantr 481 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ∈ ℤ)
38 lencl 13873 . . . . . . . . . . . . . . . 16 ((𝐹 ++ 𝑒) ∈ Word ℝ → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
3932, 38syl 17 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
4039nn0zd 12074 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ ℤ)
4135nn0red 11945 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℝ)
42 lencl 13873 . . . . . . . . . . . . . . . 16 (𝑒 ∈ Word ℝ → (♯‘𝑒) ∈ ℕ0)
43 nn0addge1 11932 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℝ ∧ (♯‘𝑒) ∈ ℕ0) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
4441, 42, 43syl2an 595 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
45 ccatlen 13917 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒)))
4644, 45breqtrrd 5091 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒)))
47 eluz2 12238 . . . . . . . . . . . . . 14 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) ↔ ((♯‘𝐹) ∈ ℤ ∧ (♯‘(𝐹 ++ 𝑒)) ∈ ℤ ∧ (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒))))
4837, 40, 46, 47syl3anbrc 1337 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)))
49 fzoss2 13055 . . . . . . . . . . . . 13 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5150ad2ant2r 743 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
52 simplr 765 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑁 ∈ (0..^(♯‘𝐹)))
5351, 52sseldd 3972 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒))))
54 signsv.p . . . . . . . . . . 11 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
55 signsv.w . . . . . . . . . . 11 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
56 signsv.t . . . . . . . . . . 11 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
57 signsv.v . . . . . . . . . . 11 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
5854, 55, 56, 57signstfvp 31727 . . . . . . . . . 10 (((𝐹 ++ 𝑒) ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
5933, 34, 53, 58syl3anc 1365 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6031, 59eqtr3d 2863 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
61 id 22 . . . . . . . 8 (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))
6260, 61sylan9eq 2881 . . . . . . 7 ((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))
6362ex 413 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
6463expcom 414 . . . . 5 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6564a2d 29 . . . 4 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
665, 10, 15, 20, 24, 65wrdind 14074 . . 3 (𝐺 ∈ Word ℝ → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
67663impib 1110 . 2 ((𝐺 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
68673com12 1117 1 ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021   ⊆ wss 3940  ∅c0 4295  ifcif 4470  {cpr 4566  {ctp 4568  ⟨cop 4570   class class class wbr 5063   ↦ cmpt 5143  ‘cfv 6352  (class class class)co 7148   ∈ cmpo 7150  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   ≤ cle 10665   − cmin 10859  -cneg 10860  ℕ0cn0 11886  ℤcz 11970  ℤ≥cuz 12232  ...cfz 12882  ..^cfzo 13023  ♯chash 13680  Word cword 13851   ++ cconcat 13912  ⟨“cs1 13939  sgncsgn 14435  Σcsu 15032  ndxcnx 16470  Basecbs 16473  +gcplusg 16555   Σg cgsu 16704 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-lsw 13905  df-concat 13913  df-s1 13940  df-substr 13993  df-pfx 14023 This theorem is referenced by:  signstres  31731
 Copyright terms: Public domain W3C validator