Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvc Structured version   Visualization version   GIF version

Theorem signstfvc 34551
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvc ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐺(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvc
Dummy variables 𝑒 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . . . 8 (𝑔 = ∅ → (𝐹 ++ 𝑔) = (𝐹 ++ ∅))
21fveq2d 6924 . . . . . . 7 (𝑔 = ∅ → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ ∅)))
32fveq1d 6922 . . . . . 6 (𝑔 = ∅ → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ ∅))‘𝑁))
43eqeq1d 2742 . . . . 5 (𝑔 = ∅ → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁)))
54imbi2d 340 . . . 4 (𝑔 = ∅ → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6 oveq2 7456 . . . . . . . 8 (𝑔 = 𝑒 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝑒))
76fveq2d 6924 . . . . . . 7 (𝑔 = 𝑒 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝑒)))
87fveq1d 6922 . . . . . 6 (𝑔 = 𝑒 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
98eqeq1d 2742 . . . . 5 (𝑔 = 𝑒 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)))
109imbi2d 340 . . . 4 (𝑔 = 𝑒 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))))
11 oveq2 7456 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝐹 ++ 𝑔) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
1211fveq2d 6924 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
1312fveq1d 6922 . . . . . 6 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
1413eqeq1d 2742 . . . . 5 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
1514imbi2d 340 . . . 4 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
16 oveq2 7456 . . . . . . . 8 (𝑔 = 𝐺 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝐺))
1716fveq2d 6924 . . . . . . 7 (𝑔 = 𝐺 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝐺)))
1817fveq1d 6922 . . . . . 6 (𝑔 = 𝐺 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝐺))‘𝑁))
1918eqeq1d 2742 . . . . 5 (𝑔 = 𝐺 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
2019imbi2d 340 . . . 4 (𝑔 = 𝐺 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))))
21 ccatrid 14635 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ∅) = 𝐹)
2221fveq2d 6924 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇‘(𝐹 ++ ∅)) = (𝑇𝐹))
2322fveq1d 6922 . . . . 5 (𝐹 ∈ Word ℝ → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
2423adantr 480 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
25 s1cl 14650 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → ⟨“𝑘”⟩ ∈ Word ℝ)
26 ccatass 14636 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ ⟨“𝑘”⟩ ∈ Word ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
2725, 26syl3an3 1165 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
28273expb 1120 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
2928adantlr 714 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
3029fveq2d 6924 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
3130fveq1d 6922 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
32 ccatcl 14622 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (𝐹 ++ 𝑒) ∈ Word ℝ)
3332ad2ant2r 746 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (𝐹 ++ 𝑒) ∈ Word ℝ)
34 simprr 772 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑘 ∈ ℝ)
35 lencl 14581 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
3635nn0zd 12665 . . . . . . . . . . . . . . 15 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
3736adantr 480 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ∈ ℤ)
38 lencl 14581 . . . . . . . . . . . . . . . 16 ((𝐹 ++ 𝑒) ∈ Word ℝ → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
3932, 38syl 17 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
4039nn0zd 12665 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ ℤ)
4135nn0red 12614 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℝ)
42 lencl 14581 . . . . . . . . . . . . . . . 16 (𝑒 ∈ Word ℝ → (♯‘𝑒) ∈ ℕ0)
43 nn0addge1 12599 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℝ ∧ (♯‘𝑒) ∈ ℕ0) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
4441, 42, 43syl2an 595 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
45 ccatlen 14623 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒)))
4644, 45breqtrrd 5194 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒)))
47 eluz2 12909 . . . . . . . . . . . . . 14 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) ↔ ((♯‘𝐹) ∈ ℤ ∧ (♯‘(𝐹 ++ 𝑒)) ∈ ℤ ∧ (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒))))
4837, 40, 46, 47syl3anbrc 1343 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)))
49 fzoss2 13744 . . . . . . . . . . . . 13 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5150ad2ant2r 746 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
52 simplr 768 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑁 ∈ (0..^(♯‘𝐹)))
5351, 52sseldd 4009 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒))))
54 signsv.p . . . . . . . . . . 11 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
55 signsv.w . . . . . . . . . . 11 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
56 signsv.t . . . . . . . . . . 11 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
57 signsv.v . . . . . . . . . . 11 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
5854, 55, 56, 57signstfvp 34548 . . . . . . . . . 10 (((𝐹 ++ 𝑒) ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
5933, 34, 53, 58syl3anc 1371 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6031, 59eqtr3d 2782 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
61 id 22 . . . . . . . 8 (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))
6260, 61sylan9eq 2800 . . . . . . 7 ((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))
6362ex 412 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
6463expcom 413 . . . . 5 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6564a2d 29 . . . 4 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
665, 10, 15, 20, 24, 65wrdind 14770 . . 3 (𝐺 ∈ Word ℝ → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
67663impib 1116 . 2 ((𝐺 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
68673com12 1123 1 ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976  c0 4352  ifcif 4548  {cpr 4650  {ctp 4652  cop 4654   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  cmin 11520  -cneg 11521  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643  sgncsgn 15135  Σcsu 15734  ndxcnx 17240  Basecbs 17258  +gcplusg 17311   Σg cgsu 17500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719
This theorem is referenced by:  signstres  34552
  Copyright terms: Public domain W3C validator