Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑔 = ∅ → (𝐹 ++ 𝑔) = (𝐹 ++ ∅)) |
2 | 1 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑔 = ∅ → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ ∅))) |
3 | 2 | fveq1d 6758 |
. . . . . 6
⊢ (𝑔 = ∅ → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ ∅))‘𝑁)) |
4 | 3 | eqeq1d 2740 |
. . . . 5
⊢ (𝑔 = ∅ → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇‘𝐹)‘𝑁))) |
5 | 4 | imbi2d 340 |
. . . 4
⊢ (𝑔 = ∅ → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇‘𝐹)‘𝑁)))) |
6 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑔 = 𝑒 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝑒)) |
7 | 6 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑔 = 𝑒 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝑒))) |
8 | 7 | fveq1d 6758 |
. . . . . 6
⊢ (𝑔 = 𝑒 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁)) |
9 | 8 | eqeq1d 2740 |
. . . . 5
⊢ (𝑔 = 𝑒 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇‘𝐹)‘𝑁))) |
10 | 9 | imbi2d 340 |
. . . 4
⊢ (𝑔 = 𝑒 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇‘𝐹)‘𝑁)))) |
11 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑔 = (𝑒 ++ 〈“𝑘”〉) → (𝐹 ++ 𝑔) = (𝐹 ++ (𝑒 ++ 〈“𝑘”〉))) |
12 | 11 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑔 = (𝑒 ++ 〈“𝑘”〉) → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))) |
13 | 12 | fveq1d 6758 |
. . . . . 6
⊢ (𝑔 = (𝑒 ++ 〈“𝑘”〉) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁)) |
14 | 13 | eqeq1d 2740 |
. . . . 5
⊢ (𝑔 = (𝑒 ++ 〈“𝑘”〉) → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁) = ((𝑇‘𝐹)‘𝑁))) |
15 | 14 | imbi2d 340 |
. . . 4
⊢ (𝑔 = (𝑒 ++ 〈“𝑘”〉) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁) = ((𝑇‘𝐹)‘𝑁)))) |
16 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝐺)) |
17 | 16 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝐺))) |
18 | 17 | fveq1d 6758 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝐺))‘𝑁)) |
19 | 18 | eqeq1d 2740 |
. . . . 5
⊢ (𝑔 = 𝐺 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇‘𝐹)‘𝑁))) |
20 | 19 | imbi2d 340 |
. . . 4
⊢ (𝑔 = 𝐺 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇‘𝐹)‘𝑁)))) |
21 | | ccatrid 14220 |
. . . . . . 7
⊢ (𝐹 ∈ Word ℝ →
(𝐹 ++ ∅) = 𝐹) |
22 | 21 | fveq2d 6760 |
. . . . . 6
⊢ (𝐹 ∈ Word ℝ →
(𝑇‘(𝐹 ++ ∅)) = (𝑇‘𝐹)) |
23 | 22 | fveq1d 6758 |
. . . . 5
⊢ (𝐹 ∈ Word ℝ →
((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) |
24 | 23 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) |
25 | | s1cl 14235 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℝ →
〈“𝑘”〉
∈ Word ℝ) |
26 | | ccatass 14221 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧
〈“𝑘”〉
∈ Word ℝ) → ((𝐹 ++ 𝑒) ++ 〈“𝑘”〉) = (𝐹 ++ (𝑒 ++ 〈“𝑘”〉))) |
27 | 25, 26 | syl3an3 1163 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ++ 𝑒) ++ 〈“𝑘”〉) = (𝐹 ++ (𝑒 ++ 〈“𝑘”〉))) |
28 | 27 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Word ℝ ∧
(𝑒 ∈ Word ℝ
∧ 𝑘 ∈ ℝ))
→ ((𝐹 ++ 𝑒) ++ 〈“𝑘”〉) = (𝐹 ++ (𝑒 ++ 〈“𝑘”〉))) |
29 | 28 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → ((𝐹 ++
𝑒) ++ 〈“𝑘”〉) = (𝐹 ++ (𝑒 ++ 〈“𝑘”〉))) |
30 | 29 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → (𝑇‘((𝐹 ++ 𝑒) ++ 〈“𝑘”〉)) = (𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))) |
31 | 30 | fveq1d 6758 |
. . . . . . . . 9
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ 〈“𝑘”〉))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁)) |
32 | | ccatcl 14205 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(𝐹 ++ 𝑒) ∈ Word ℝ) |
33 | 32 | ad2ant2r 743 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → (𝐹 ++
𝑒) ∈ Word
ℝ) |
34 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → 𝑘 ∈
ℝ) |
35 | | lencl 14164 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Word ℝ →
(♯‘𝐹) ∈
ℕ0) |
36 | 35 | nn0zd 12353 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Word ℝ →
(♯‘𝐹) ∈
ℤ) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(♯‘𝐹) ∈
ℤ) |
38 | | lencl 14164 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ++ 𝑒) ∈ Word ℝ →
(♯‘(𝐹 ++ 𝑒)) ∈
ℕ0) |
39 | 32, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(♯‘(𝐹 ++ 𝑒)) ∈
ℕ0) |
40 | 39 | nn0zd 12353 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(♯‘(𝐹 ++ 𝑒)) ∈
ℤ) |
41 | 35 | nn0red 12224 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Word ℝ →
(♯‘𝐹) ∈
ℝ) |
42 | | lencl 14164 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ Word ℝ →
(♯‘𝑒) ∈
ℕ0) |
43 | | nn0addge1 12209 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝐹)
∈ ℝ ∧ (♯‘𝑒) ∈ ℕ0) →
(♯‘𝐹) ≤
((♯‘𝐹) +
(♯‘𝑒))) |
44 | 41, 42, 43 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(♯‘𝐹) ≤
((♯‘𝐹) +
(♯‘𝑒))) |
45 | | ccatlen 14206 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒))) |
46 | 44, 45 | breqtrrd 5098 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(♯‘𝐹) ≤
(♯‘(𝐹 ++ 𝑒))) |
47 | | eluz2 12517 |
. . . . . . . . . . . . . 14
⊢
((♯‘(𝐹
++ 𝑒)) ∈
(ℤ≥‘(♯‘𝐹)) ↔ ((♯‘𝐹) ∈ ℤ ∧ (♯‘(𝐹 ++ 𝑒)) ∈ ℤ ∧ (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒)))) |
48 | 37, 40, 46, 47 | syl3anbrc 1341 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(♯‘(𝐹 ++ 𝑒)) ∈
(ℤ≥‘(♯‘𝐹))) |
49 | | fzoss2 13343 |
. . . . . . . . . . . . 13
⊢
((♯‘(𝐹
++ 𝑒)) ∈
(ℤ≥‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆
(0..^(♯‘(𝐹 ++
𝑒)))) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) →
(0..^(♯‘𝐹))
⊆ (0..^(♯‘(𝐹 ++ 𝑒)))) |
51 | 50 | ad2ant2r 743 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒)))) |
52 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → 𝑁 ∈
(0..^(♯‘𝐹))) |
53 | 51, 52 | sseldd 3918 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → 𝑁 ∈
(0..^(♯‘(𝐹 ++
𝑒)))) |
54 | | signsv.p |
. . . . . . . . . . 11
⊢ ⨣ =
(𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦
if(𝑏 = 0, 𝑎, 𝑏)) |
55 | | signsv.w |
. . . . . . . . . . 11
⊢ 𝑊 = {〈(Base‘ndx), {-1,
0, 1}〉, 〈(+g‘ndx), ⨣
〉} |
56 | | signsv.t |
. . . . . . . . . . 11
⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈
(0..^(♯‘𝑓))
↦ (𝑊
Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
57 | | signsv.v |
. . . . . . . . . . 11
⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈
(1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
58 | 54, 55, 56, 57 | signstfvp 32450 |
. . . . . . . . . 10
⊢ (((𝐹 ++ 𝑒) ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘(𝐹 ++
𝑒)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ 〈“𝑘”〉))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁)) |
59 | 33, 34, 53, 58 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ 〈“𝑘”〉))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁)) |
60 | 31, 59 | eqtr3d 2780 |
. . . . . . . 8
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁)) |
61 | | id 22 |
. . . . . . . 8
⊢ (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇‘𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) |
62 | 60, 61 | sylan9eq 2799 |
. . . . . . 7
⊢ ((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) |
63 | 62 | ex 412 |
. . . . . 6
⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ (𝑒 ∈ Word
ℝ ∧ 𝑘 ∈
ℝ)) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇‘𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁) = ((𝑇‘𝐹)‘𝑁))) |
64 | 63 | expcom 413 |
. . . . 5
⊢ ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇‘𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁) = ((𝑇‘𝐹)‘𝑁)))) |
65 | 64 | a2d 29 |
. . . 4
⊢ ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ 〈“𝑘”〉)))‘𝑁) = ((𝑇‘𝐹)‘𝑁)))) |
66 | 5, 10, 15, 20, 24, 65 | wrdind 14363 |
. . 3
⊢ (𝐺 ∈ Word ℝ →
((𝐹 ∈ Word ℝ
∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇‘𝐹)‘𝑁))) |
67 | 66 | 3impib 1114 |
. 2
⊢ ((𝐺 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) |
68 | 67 | 3com12 1121 |
1
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) |