Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvc Structured version   Visualization version   GIF version

Theorem signstfvc 31846
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvc ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐺(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvc
Dummy variables 𝑒 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . . . . . 8 (𝑔 = ∅ → (𝐹 ++ 𝑔) = (𝐹 ++ ∅))
21fveq2d 6676 . . . . . . 7 (𝑔 = ∅ → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ ∅)))
32fveq1d 6674 . . . . . 6 (𝑔 = ∅ → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ ∅))‘𝑁))
43eqeq1d 2825 . . . . 5 (𝑔 = ∅ → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁)))
54imbi2d 343 . . . 4 (𝑔 = ∅ → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6 oveq2 7166 . . . . . . . 8 (𝑔 = 𝑒 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝑒))
76fveq2d 6676 . . . . . . 7 (𝑔 = 𝑒 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝑒)))
87fveq1d 6674 . . . . . 6 (𝑔 = 𝑒 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
98eqeq1d 2825 . . . . 5 (𝑔 = 𝑒 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)))
109imbi2d 343 . . . 4 (𝑔 = 𝑒 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))))
11 oveq2 7166 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝐹 ++ 𝑔) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
1211fveq2d 6676 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
1312fveq1d 6674 . . . . . 6 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
1413eqeq1d 2825 . . . . 5 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
1514imbi2d 343 . . . 4 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
16 oveq2 7166 . . . . . . . 8 (𝑔 = 𝐺 → (𝐹 ++ 𝑔) = (𝐹 ++ 𝐺))
1716fveq2d 6676 . . . . . . 7 (𝑔 = 𝐺 → (𝑇‘(𝐹 ++ 𝑔)) = (𝑇‘(𝐹 ++ 𝐺)))
1817fveq1d 6674 . . . . . 6 (𝑔 = 𝐺 → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇‘(𝐹 ++ 𝐺))‘𝑁))
1918eqeq1d 2825 . . . . 5 (𝑔 = 𝐺 → (((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁) ↔ ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
2019imbi2d 343 . . . 4 (𝑔 = 𝐺 → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑔))‘𝑁) = ((𝑇𝐹)‘𝑁)) ↔ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))))
21 ccatrid 13943 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ∅) = 𝐹)
2221fveq2d 6676 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇‘(𝐹 ++ ∅)) = (𝑇𝐹))
2322fveq1d 6674 . . . . 5 (𝐹 ∈ Word ℝ → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
2423adantr 483 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ∅))‘𝑁) = ((𝑇𝐹)‘𝑁))
25 s1cl 13958 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → ⟨“𝑘”⟩ ∈ Word ℝ)
26 ccatass 13944 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ ⟨“𝑘”⟩ ∈ Word ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
2725, 26syl3an3 1161 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
28273expb 1116 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
2928adantlr 713 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩) = (𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))
3029fveq2d 6676 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩)) = (𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩))))
3130fveq1d 6674 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁))
32 ccatcl 13928 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (𝐹 ++ 𝑒) ∈ Word ℝ)
3332ad2ant2r 745 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (𝐹 ++ 𝑒) ∈ Word ℝ)
34 simprr 771 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑘 ∈ ℝ)
35 lencl 13885 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
3635nn0zd 12088 . . . . . . . . . . . . . . 15 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
3736adantr 483 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ∈ ℤ)
38 lencl 13885 . . . . . . . . . . . . . . . 16 ((𝐹 ++ 𝑒) ∈ Word ℝ → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
3932, 38syl 17 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ ℕ0)
4039nn0zd 12088 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ ℤ)
4135nn0red 11959 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℝ)
42 lencl 13885 . . . . . . . . . . . . . . . 16 (𝑒 ∈ Word ℝ → (♯‘𝑒) ∈ ℕ0)
43 nn0addge1 11946 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℝ ∧ (♯‘𝑒) ∈ ℕ0) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
4441, 42, 43syl2an 597 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ≤ ((♯‘𝐹) + (♯‘𝑒)))
45 ccatlen 13929 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) = ((♯‘𝐹) + (♯‘𝑒)))
4644, 45breqtrrd 5096 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒)))
47 eluz2 12252 . . . . . . . . . . . . . 14 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) ↔ ((♯‘𝐹) ∈ ℤ ∧ (♯‘(𝐹 ++ 𝑒)) ∈ ℤ ∧ (♯‘𝐹) ≤ (♯‘(𝐹 ++ 𝑒))))
4837, 40, 46, 47syl3anbrc 1339 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)))
49 fzoss2 13068 . . . . . . . . . . . . 13 ((♯‘(𝐹 ++ 𝑒)) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
5150ad2ant2r 745 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘(𝐹 ++ 𝑒))))
52 simplr 767 . . . . . . . . . . 11 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑁 ∈ (0..^(♯‘𝐹)))
5351, 52sseldd 3970 . . . . . . . . . 10 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒))))
54 signsv.p . . . . . . . . . . 11 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
55 signsv.w . . . . . . . . . . 11 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
56 signsv.t . . . . . . . . . . 11 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
57 signsv.v . . . . . . . . . . 11 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
5854, 55, 56, 57signstfvp 31843 . . . . . . . . . 10 (((𝐹 ++ 𝑒) ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ 𝑒)))) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
5933, 34, 53, 58syl3anc 1367 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘((𝐹 ++ 𝑒) ++ ⟨“𝑘”⟩))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
6031, 59eqtr3d 2860 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇‘(𝐹 ++ 𝑒))‘𝑁))
61 id 22 . . . . . . . 8 (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁))
6260, 61sylan9eq 2878 . . . . . . 7 ((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) ∧ ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))
6362ex 415 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ)) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁)))
6463expcom 416 . . . . 5 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
6564a2d 29 . . . 4 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝑒))‘𝑁) = ((𝑇𝐹)‘𝑁)) → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ (𝑒 ++ ⟨“𝑘”⟩)))‘𝑁) = ((𝑇𝐹)‘𝑁))))
665, 10, 15, 20, 24, 65wrdind 14086 . . 3 (𝐺 ∈ Word ℝ → ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁)))
67663impib 1112 . 2 ((𝐺 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
68673com12 1119 1 ((𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 𝐺))‘𝑁) = ((𝑇𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wss 3938  c0 4293  ifcif 4469  {cpr 4571  {ctp 4573  cop 4575   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cmpo 7160  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  cle 10678  cmin 10872  -cneg 10873  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864   ++ cconcat 13924  ⟨“cs1 13951  sgncsgn 14447  Σcsu 15044  ndxcnx 16482  Basecbs 16485  +gcplusg 16567   Σg cgsu 16716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035
This theorem is referenced by:  signstres  31847
  Copyright terms: Public domain W3C validator