![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xltmul1 | Structured version Visualization version GIF version |
Description: Extended real version of ltmul1 11227. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xltmul1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴 ·e 𝐶) < (𝐵 ·e 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlemul1 12432 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐵 ≤ 𝐴 ↔ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶))) | |
2 | 1 | 3com12 1114 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐵 ≤ 𝐴 ↔ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶))) |
3 | 2 | notbid 310 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (¬ 𝐵 ≤ 𝐴 ↔ ¬ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶))) |
4 | xrltnle 10444 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | |
5 | 4 | 3adant3 1123 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
6 | simp1 1127 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ*) | |
7 | rpxr 12148 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ*) | |
8 | 7 | 3ad2ant3 1126 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ*) |
9 | xmulcl 12415 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*) | |
10 | 6, 8, 9 | syl2anc 579 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ·e 𝐶) ∈ ℝ*) |
11 | simp2 1128 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ*) | |
12 | xmulcl 12415 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*) | |
13 | 11, 8, 12 | syl2anc 579 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐵 ·e 𝐶) ∈ ℝ*) |
14 | xrltnle 10444 | . . 3 ⊢ (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐶) < (𝐵 ·e 𝐶) ↔ ¬ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶))) | |
15 | 10, 13, 14 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) < (𝐵 ·e 𝐶) ↔ ¬ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶))) |
16 | 3, 5, 15 | 3bitr4d 303 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴 ·e 𝐶) < (𝐵 ·e 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ w3a 1071 ∈ wcel 2106 class class class wbr 4886 (class class class)co 6922 ℝ*cxr 10410 < clt 10411 ≤ cle 10412 ℝ+crp 12137 ·e cxmu 12256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-rp 12138 df-xneg 12257 df-xmul 12259 |
This theorem is referenced by: xltmul2 12435 |
Copyright terms: Public domain | W3C validator |