MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xltmul1 Structured version   Visualization version   GIF version

Theorem xltmul1 12434
Description: Extended real version of ltmul1 11227. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltmul1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴 ·e 𝐶) < (𝐵 ·e 𝐶)))

Proof of Theorem xltmul1
StepHypRef Expression
1 xlemul1 12432 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵𝐴 ↔ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶)))
213com12 1114 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵𝐴 ↔ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶)))
32notbid 310 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (¬ 𝐵𝐴 ↔ ¬ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶)))
4 xrltnle 10444 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
543adant3 1123 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
6 simp1 1127 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ*)
7 rpxr 12148 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ ℝ*)
873ad2ant3 1126 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ*)
9 xmulcl 12415 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
106, 8, 9syl2anc 579 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 𝐶) ∈ ℝ*)
11 simp2 1128 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ*)
12 xmulcl 12415 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
1311, 8, 12syl2anc 579 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 𝐶) ∈ ℝ*)
14 xrltnle 10444 . . 3 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐶) < (𝐵 ·e 𝐶) ↔ ¬ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶)))
1510, 13, 14syl2anc 579 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) < (𝐵 ·e 𝐶) ↔ ¬ (𝐵 ·e 𝐶) ≤ (𝐴 ·e 𝐶)))
163, 5, 153bitr4d 303 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴 ·e 𝐶) < (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  w3a 1071  wcel 2106   class class class wbr 4886  (class class class)co 6922  *cxr 10410   < clt 10411  cle 10412  +crp 12137   ·e cxmu 12256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-rp 12138  df-xneg 12257  df-xmul 12259
This theorem is referenced by:  xltmul2  12435
  Copyright terms: Public domain W3C validator