MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul1 Structured version   Visualization version   GIF version

Theorem ltmul1 12064
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))

Proof of Theorem ltmul1
StepHypRef Expression
1 ltmul1a 12063 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โˆง ๐ด < ๐ต) โ†’ (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ))
21ex 414 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†’ (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))
3 oveq1 7416 . . . . . 6 (๐ด = ๐ต โ†’ (๐ด ยท ๐ถ) = (๐ต ยท ๐ถ))
43a1i 11 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด = ๐ต โ†’ (๐ด ยท ๐ถ) = (๐ต ยท ๐ถ)))
5 ltmul1a 12063 . . . . . . 7 (((๐ต โˆˆ โ„ โˆง ๐ด โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โˆง ๐ต < ๐ด) โ†’ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ))
65ex 414 . . . . . 6 ((๐ต โˆˆ โ„ โˆง ๐ด โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ต < ๐ด โ†’ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ)))
763com12 1124 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ต < ๐ด โ†’ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ)))
84, 7orim12d 964 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด = ๐ต โˆจ ๐ต < ๐ด) โ†’ ((๐ด ยท ๐ถ) = (๐ต ยท ๐ถ) โˆจ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ))))
98con3d 152 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (ยฌ ((๐ด ยท ๐ถ) = (๐ต ยท ๐ถ) โˆจ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ)) โ†’ ยฌ (๐ด = ๐ต โˆจ ๐ต < ๐ด)))
10 simp1 1137 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ด โˆˆ โ„)
11 simp3l 1202 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ถ โˆˆ โ„)
1210, 11remulcld 11244 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด ยท ๐ถ) โˆˆ โ„)
13 simp2 1138 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ต โˆˆ โ„)
1413, 11remulcld 11244 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„)
1512, 14lttrid 11352 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†” ยฌ ((๐ด ยท ๐ถ) = (๐ต ยท ๐ถ) โˆจ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ))))
1610, 13lttrid 11352 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” ยฌ (๐ด = ๐ต โˆจ ๐ต < ๐ด)))
179, 15, 163imtr4d 294 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†’ ๐ด < ๐ต))
182, 17impbid 211 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 397   โˆจ wo 846   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107   class class class wbr 5149  (class class class)co 7409  โ„cr 11109  0cc0 11110   ยท cmul 11115   < clt 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446  df-neg 11447
This theorem is referenced by:  ltmul2  12065  lemul1  12066  ltdiv1  12078  ltdiv23  12105  recp1lt1  12112  ltmul1i  12132  ltdivp1i  12140  ltmul1d  13057  expmulnbnd  14198  discr1  14202  mertenslem1  15830  qnumgt0  16686  4sqlem12  16889  pgpfaclem2  19952  mbfi1fseqlem4  25236  itg2monolem1  25268  dgrcolem2  25788  tangtx  26015  ftalem1  26577  basellem4  26588  lgsquadlem1  26883  lgsquadlem2  26884  pntpbnd1  27089  ostth2lem1  27121  nn0prpwlem  35207  pellexlem2  41568  stoweidlem34  44750  stoweidlem59  44775
  Copyright terms: Public domain W3C validator