MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul1 Structured version   Visualization version   GIF version

Theorem ltmul1 11343
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))

Proof of Theorem ltmul1
StepHypRef Expression
1 ltmul1a 11342 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶))
21ex 413 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 → (𝐴 · 𝐶) < (𝐵 · 𝐶)))
3 oveq1 7028 . . . . . 6 (𝐴 = 𝐵 → (𝐴 · 𝐶) = (𝐵 · 𝐶))
43a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 = 𝐵 → (𝐴 · 𝐶) = (𝐵 · 𝐶)))
5 ltmul1a 11342 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐵 < 𝐴) → (𝐵 · 𝐶) < (𝐴 · 𝐶))
65ex 413 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 → (𝐵 · 𝐶) < (𝐴 · 𝐶)))
763com12 1116 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 → (𝐵 · 𝐶) < (𝐴 · 𝐶)))
84, 7orim12d 959 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 = 𝐵𝐵 < 𝐴) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
98con3d 155 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (¬ ((𝐴 · 𝐶) = (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶)) → ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
10 simp1 1129 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ)
11 simp3l 1194 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
1210, 11remulcld 10522 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 · 𝐶) ∈ ℝ)
13 simp2 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℝ)
1413, 11remulcld 10522 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 · 𝐶) ∈ ℝ)
1512, 14lttrid 10630 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ ¬ ((𝐴 · 𝐶) = (𝐵 · 𝐶) ∨ (𝐵 · 𝐶) < (𝐴 · 𝐶))))
1610, 13lttrid 10630 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
179, 15, 163imtr4d 295 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
182, 17impbid 213 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081   class class class wbr 4966  (class class class)co 7021  cr 10387  0cc0 10388   · cmul 10393   < clt 10526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-br 4967  df-opab 5029  df-mpt 5046  df-id 5353  df-po 5367  df-so 5368  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-ltxr 10531  df-sub 10724  df-neg 10725
This theorem is referenced by:  ltmul2  11344  lemul1  11345  ltdiv1  11357  ltdiv23  11384  recp1lt1  11391  ltmul1i  11411  ltdivp1i  11419  ltmul1d  12327  expmulnbnd  13451  discr1  13455  mertenslem1  15078  qnumgt0  15924  4sqlem12  16126  pgpfaclem2  18926  mbfi1fseqlem4  24007  itg2monolem1  24039  dgrcolem2  24552  tangtx  24779  ftalem1  25337  basellem4  25348  lgsquadlem1  25643  lgsquadlem2  25644  pntpbnd1  25849  ostth2lem1  25881  nn0prpwlem  33285  pellexlem2  38937  stoweidlem34  41887  stoweidlem59  41912
  Copyright terms: Public domain W3C validator