MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul1 Structured version   Visualization version   GIF version

Theorem ltmul1 12010
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))

Proof of Theorem ltmul1
StepHypRef Expression
1 ltmul1a 12009 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โˆง ๐ด < ๐ต) โ†’ (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ))
21ex 414 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†’ (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))
3 oveq1 7365 . . . . . 6 (๐ด = ๐ต โ†’ (๐ด ยท ๐ถ) = (๐ต ยท ๐ถ))
43a1i 11 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด = ๐ต โ†’ (๐ด ยท ๐ถ) = (๐ต ยท ๐ถ)))
5 ltmul1a 12009 . . . . . . 7 (((๐ต โˆˆ โ„ โˆง ๐ด โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โˆง ๐ต < ๐ด) โ†’ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ))
65ex 414 . . . . . 6 ((๐ต โˆˆ โ„ โˆง ๐ด โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ต < ๐ด โ†’ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ)))
763com12 1124 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ต < ๐ด โ†’ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ)))
84, 7orim12d 964 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด = ๐ต โˆจ ๐ต < ๐ด) โ†’ ((๐ด ยท ๐ถ) = (๐ต ยท ๐ถ) โˆจ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ))))
98con3d 152 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (ยฌ ((๐ด ยท ๐ถ) = (๐ต ยท ๐ถ) โˆจ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ)) โ†’ ยฌ (๐ด = ๐ต โˆจ ๐ต < ๐ด)))
10 simp1 1137 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ด โˆˆ โ„)
11 simp3l 1202 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ถ โˆˆ โ„)
1210, 11remulcld 11190 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด ยท ๐ถ) โˆˆ โ„)
13 simp2 1138 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ต โˆˆ โ„)
1413, 11remulcld 11190 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„)
1512, 14lttrid 11298 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†” ยฌ ((๐ด ยท ๐ถ) = (๐ต ยท ๐ถ) โˆจ (๐ต ยท ๐ถ) < (๐ด ยท ๐ถ))))
1610, 13lttrid 11298 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” ยฌ (๐ด = ๐ต โˆจ ๐ต < ๐ด)))
179, 15, 163imtr4d 294 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด ยท ๐ถ) < (๐ต ยท ๐ถ) โ†’ ๐ด < ๐ต))
182, 17impbid 211 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < ๐ต โ†” (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 397   โˆจ wo 846   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107   class class class wbr 5106  (class class class)co 7358  โ„cr 11055  0cc0 11056   ยท cmul 11061   < clt 11194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-ltxr 11199  df-sub 11392  df-neg 11393
This theorem is referenced by:  ltmul2  12011  lemul1  12012  ltdiv1  12024  ltdiv23  12051  recp1lt1  12058  ltmul1i  12078  ltdivp1i  12086  ltmul1d  13003  expmulnbnd  14144  discr1  14148  mertenslem1  15774  qnumgt0  16630  4sqlem12  16833  pgpfaclem2  19866  mbfi1fseqlem4  25099  itg2monolem1  25131  dgrcolem2  25651  tangtx  25878  ftalem1  26438  basellem4  26449  lgsquadlem1  26744  lgsquadlem2  26745  pntpbnd1  26950  ostth2lem1  26982  nn0prpwlem  34840  pellexlem2  41196  stoweidlem34  44361  stoweidlem59  44386
  Copyright terms: Public domain W3C validator