![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lediv1 | Structured version Visualization version GIF version |
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.) |
Ref | Expression |
---|---|
lediv1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv1 12085 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 ↔ (𝐵 / 𝐶) < (𝐴 / 𝐶))) | |
2 | 1 | 3com12 1122 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 ↔ (𝐵 / 𝐶) < (𝐴 / 𝐶))) |
3 | 2 | notbid 318 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵 / 𝐶) < (𝐴 / 𝐶))) |
4 | lenlt 11299 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
5 | 4 | 3adant3 1131 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
6 | gt0ne0 11686 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0) | |
7 | 6 | 3adant1 1129 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0) |
8 | redivcl 11940 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℝ) | |
9 | 7, 8 | syld3an3 1408 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴 / 𝐶) ∈ ℝ) |
10 | 9 | 3expb 1119 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 / 𝐶) ∈ ℝ) |
11 | 10 | 3adant2 1130 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 / 𝐶) ∈ ℝ) |
12 | 6 | 3adant1 1129 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0) |
13 | redivcl 11940 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℝ) | |
14 | 12, 13 | syld3an3 1408 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐵 / 𝐶) ∈ ℝ) |
15 | 14 | 3expb 1119 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ) |
16 | 15 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ) |
17 | 11, 16 | lenltd 11367 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ (𝐵 / 𝐶) ↔ ¬ (𝐵 / 𝐶) < (𝐴 / 𝐶))) |
18 | 3, 5, 17 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 (class class class)co 7412 ℝcr 11115 0cc0 11116 < clt 11255 ≤ cle 11256 / cdiv 11878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 |
This theorem is referenced by: ge0div 12088 ledivmul 12097 lediv23 12113 lediv1d 13069 icccntr 13476 quoremz 13827 quoremnn0ALT 13829 sin01bnd 16135 cos01bnd 16136 sin02gt0 16142 hashdvds 16715 ovolscalem1 25362 dyadf 25440 dyadovol 25442 dyadmaxlem 25446 mbfi1fseqlem6 25570 cosordlem 26379 cxpcn3lem 26596 dvdsflf1o 27032 ppiub 27050 logfacrlim 27070 bposlem5 27134 gausslemma2dlem1a 27211 gausslemma2dlem3 27214 lgseisenlem1 27221 2lgslem1c 27239 vmadivsum 27328 mulog2sumlem2 27381 logdivbnd 27402 cdj1i 32119 taupilem1 36666 cos2h 36943 heiborlem8 37150 reglogleb 42093 areaquad 42428 stoweidlem1 45176 stoweidlem11 45186 stoweidlem14 45189 flnn0div2ge 47381 |
Copyright terms: Public domain | W3C validator |