MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv1 Structured version   Visualization version   GIF version

Theorem lediv1 11987
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
lediv1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))

Proof of Theorem lediv1
StepHypRef Expression
1 ltdiv1 11986 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 ↔ (𝐵 / 𝐶) < (𝐴 / 𝐶)))
213com12 1123 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 ↔ (𝐵 / 𝐶) < (𝐴 / 𝐶)))
32notbid 318 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵 / 𝐶) < (𝐴 / 𝐶)))
4 lenlt 11191 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
543adant3 1132 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
6 gt0ne0 11582 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
763adant1 1130 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
8 redivcl 11840 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℝ)
97, 8syld3an3 1411 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴 / 𝐶) ∈ ℝ)
1093expb 1120 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 / 𝐶) ∈ ℝ)
11103adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 / 𝐶) ∈ ℝ)
1263adant1 1130 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
13 redivcl 11840 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℝ)
1412, 13syld3an3 1411 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐵 / 𝐶) ∈ ℝ)
15143expb 1120 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ)
16153adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ)
1711, 16lenltd 11259 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ (𝐵 / 𝐶) ↔ ¬ (𝐵 / 𝐶) < (𝐴 / 𝐶)))
183, 5, 173bitr4d 311 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wne 2928   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006   < clt 11146  cle 11147   / cdiv 11774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775
This theorem is referenced by:  ge0div  11989  ledivmul  11998  lediv23  12014  lediv1d  12980  icccntr  13392  quoremz  13759  quoremnn0ALT  13761  sin01bnd  16094  cos01bnd  16095  sin02gt0  16101  hashdvds  16686  ovolscalem1  25441  dyadf  25519  dyadovol  25521  dyadmaxlem  25525  mbfi1fseqlem6  25648  cosordlem  26466  cxpcn3lem  26684  dvdsflf1o  27124  ppiub  27142  logfacrlim  27162  bposlem5  27226  gausslemma2dlem1a  27303  gausslemma2dlem3  27306  lgseisenlem1  27313  2lgslem1c  27331  vmadivsum  27420  mulog2sumlem2  27473  logdivbnd  27494  cdj1i  32413  taupilem1  37365  cos2h  37661  heiborlem8  37868  reglogleb  42995  areaquad  43319  stoweidlem1  46109  stoweidlem11  46119  stoweidlem14  46122  flnn0div2ge  48644
  Copyright terms: Public domain W3C validator