Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2lgslem3c1 | Structured version Visualization version GIF version |
Description: Lemma 3 for 2lgslem3 26457. (Contributed by AV, 16-Jul-2021.) |
Ref | Expression |
---|---|
2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
Ref | Expression |
---|---|
2lgslem3c1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12170 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
2 | 8nn 11998 | . . . . 5 ⊢ 8 ∈ ℕ | |
3 | nnrp 12670 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 8 ∈ ℝ+ |
5 | modmuladdnn0 13563 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 5 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5))) | |
6 | 1, 4, 5 | sylancl 585 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 5 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5))) |
7 | simpr 484 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
8 | nn0cn 12173 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
9 | 8cn 12000 | . . . . . . . . . . . 12 ⊢ 8 ∈ ℂ | |
10 | 9 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
11 | 8, 10 | mulcomd 10927 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
12 | 11 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
13 | 12 | oveq1d 7270 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 5) = ((8 · 𝑘) + 5)) |
14 | 13 | eqeq2d 2749 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 5) ↔ 𝑃 = ((8 · 𝑘) + 5))) |
15 | 14 | biimpa 476 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → 𝑃 = ((8 · 𝑘) + 5)) |
16 | 2lgslem2.n | . . . . . . 7 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
17 | 16 | 2lgslem3c 26451 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 5)) → 𝑁 = ((2 · 𝑘) + 1)) |
18 | 7, 15, 17 | syl2an2r 681 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → 𝑁 = ((2 · 𝑘) + 1)) |
19 | oveq1 7262 | . . . . . 6 ⊢ (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2)) | |
20 | nn0z 12273 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
21 | eqidd 2739 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) | |
22 | 2tp1odd 15989 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1)) | |
23 | 20, 21, 22 | syl2anc 583 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1)) |
24 | 2z 12282 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
25 | 24 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℤ) |
26 | 25, 20 | zmulcld 12361 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ) |
27 | 26 | peano2zd 12358 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ) |
28 | mod2eq1n2dvds 15984 | . . . . . . . 8 ⊢ (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) | |
29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) |
30 | 23, 29 | mpbird 256 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1) |
31 | 19, 30 | sylan9eqr 2801 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1) |
32 | 7, 18, 31 | syl2an2r 681 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → (𝑁 mod 2) = 1) |
33 | 32 | rexlimdva2 3215 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5) → (𝑁 mod 2) = 1)) |
34 | 6, 33 | syld 47 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 5 → (𝑁 mod 2) = 1)) |
35 | 34 | imp 406 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 4c4 11960 5c5 11961 8c8 11964 ℕ0cn0 12163 ℤcz 12249 ℝ+crp 12659 ⌊cfl 13438 mod cmo 13517 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fl 13440 df-mod 13518 df-dvds 15892 |
This theorem is referenced by: 2lgslem3 26457 |
Copyright terms: Public domain | W3C validator |