| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgslem3c1 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for 2lgslem3 27315. (Contributed by AV, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
| Ref | Expression |
|---|---|
| 2lgslem3c1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 12449 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 2 | 8nn 12281 | . . . . 5 ⊢ 8 ∈ ℕ | |
| 3 | nnrp 12963 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 8 ∈ ℝ+ |
| 5 | modmuladdnn0 13880 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 5 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5))) | |
| 6 | 1, 4, 5 | sylancl 586 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 5 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5))) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 8 | nn0cn 12452 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
| 9 | 8cn 12283 | . . . . . . . . . . . 12 ⊢ 8 ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
| 11 | 8, 10 | mulcomd 11195 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
| 12 | 11 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
| 13 | 12 | oveq1d 7402 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 5) = ((8 · 𝑘) + 5)) |
| 14 | 13 | eqeq2d 2740 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 5) ↔ 𝑃 = ((8 · 𝑘) + 5))) |
| 15 | 14 | biimpa 476 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → 𝑃 = ((8 · 𝑘) + 5)) |
| 16 | 2lgslem2.n | . . . . . . 7 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
| 17 | 16 | 2lgslem3c 27309 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 5)) → 𝑁 = ((2 · 𝑘) + 1)) |
| 18 | 7, 15, 17 | syl2an2r 685 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → 𝑁 = ((2 · 𝑘) + 1)) |
| 19 | oveq1 7394 | . . . . . 6 ⊢ (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2)) | |
| 20 | nn0z 12554 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
| 21 | eqidd 2730 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) | |
| 22 | 2tp1odd 16322 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1)) | |
| 23 | 20, 21, 22 | syl2anc 584 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1)) |
| 24 | 2z 12565 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 25 | 24 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℤ) |
| 26 | 25, 20 | zmulcld 12644 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ) |
| 27 | 26 | peano2zd 12641 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ) |
| 28 | mod2eq1n2dvds 16317 | . . . . . . . 8 ⊢ (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) | |
| 29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) |
| 30 | 23, 29 | mpbird 257 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1) |
| 31 | 19, 30 | sylan9eqr 2786 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1) |
| 32 | 7, 18, 31 | syl2an2r 685 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → (𝑁 mod 2) = 1) |
| 33 | 32 | rexlimdva2 3136 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5) → (𝑁 mod 2) = 1)) |
| 34 | 6, 33 | syld 47 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 5 → (𝑁 mod 2) = 1)) |
| 35 | 34 | imp 406 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 4c4 12243 5c5 12244 8c8 12247 ℕ0cn0 12442 ℤcz 12529 ℝ+crp 12951 ⌊cfl 13752 mod cmo 13831 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-fl 13754 df-mod 13832 df-dvds 16223 |
| This theorem is referenced by: 2lgslem3 27315 |
| Copyright terms: Public domain | W3C validator |