MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3c1 Structured version   Visualization version   GIF version

Theorem 2lgslem3c1 25992
Description: Lemma 3 for 2lgslem3 25994. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3c1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)

Proof of Theorem 2lgslem3c1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11904 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 11732 . . . . 5 8 ∈ ℕ
3 nnrp 12400 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13290 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 5 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5)))
61, 4, 5sylancl 589 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 5 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5)))
7 simpr 488 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 11907 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 11734 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 10661 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 485 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7165 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 5) = ((8 · 𝑘) + 5))
1413eqeq2d 2835 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 5) ↔ 𝑃 = ((8 · 𝑘) + 5)))
1514biimpa 480 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → 𝑃 = ((8 · 𝑘) + 5))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3c 25988 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 5)) → 𝑁 = ((2 · 𝑘) + 1))
187, 15, 17syl2an2r 684 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → 𝑁 = ((2 · 𝑘) + 1))
19 oveq1 7157 . . . . . 6 (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2))
20 nn0z 12005 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
21 eqidd 2825 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1))
22 2tp1odd 15704 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1))
2320, 21, 22syl2anc 587 . . . . . . 7 (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1))
24 2z 12014 . . . . . . . . . . 11 2 ∈ ℤ
2524a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℤ)
2625, 20zmulcld 12093 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ)
2726peano2zd 12090 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ)
28 mod2eq1n2dvds 15699 . . . . . . . 8 (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
2927, 28syl 17 . . . . . . 7 (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
3023, 29mpbird 260 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1)
3119, 30sylan9eqr 2881 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1)
327, 18, 31syl2an2r 684 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → (𝑁 mod 2) = 1)
3332rexlimdva2 3280 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5) → (𝑁 mod 2) = 1))
346, 33syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 5 → (𝑁 mod 2) = 1))
3534imp 410 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wrex 3134   class class class wbr 5053  cfv 6344  (class class class)co 7150  cc 10534  1c1 10537   + caddc 10539   · cmul 10541  cmin 10869   / cdiv 11296  cn 11637  2c2 11692  4c4 11694  5c5 11695  8c8 11698  0cn0 11897  cz 11981  +crp 12389  cfl 13167   mod cmo 13244  cdvds 15610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-sup 8904  df-inf 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-7 11705  df-8 11706  df-n0 11898  df-z 11982  df-uz 12244  df-rp 12390  df-ico 12744  df-fl 13169  df-mod 13245  df-dvds 15611
This theorem is referenced by:  2lgslem3  25994
  Copyright terms: Public domain W3C validator