MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1cl Structured version   Visualization version   GIF version

Theorem quart1cl 26004
Description: Closure lemmas for quart 26011. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart1.a (𝜑𝐴 ∈ ℂ)
quart1.b (𝜑𝐵 ∈ ℂ)
quart1.c (𝜑𝐶 ∈ ℂ)
quart1.d (𝜑𝐷 ∈ ℂ)
quart1.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart1.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart1.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
Assertion
Ref Expression
quart1cl (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))

Proof of Theorem quart1cl
StepHypRef Expression
1 quart1.p . . 3 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
2 quart1.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 3cn 12054 . . . . . 6 3 ∈ ℂ
4 8cn 12070 . . . . . 6 8 ∈ ℂ
5 8nn 12068 . . . . . . 7 8 ∈ ℕ
65nnne0i 12013 . . . . . 6 8 ≠ 0
73, 4, 6divcli 11717 . . . . 5 (3 / 8) ∈ ℂ
8 quart1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
98sqcld 13862 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
10 mulcl 10955 . . . . 5 (((3 / 8) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
117, 9, 10sylancr 587 . . . 4 (𝜑 → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
122, 11subcld 11332 . . 3 (𝜑 → (𝐵 − ((3 / 8) · (𝐴↑2))) ∈ ℂ)
131, 12eqeltrd 2839 . 2 (𝜑𝑃 ∈ ℂ)
14 quart1.q . . 3 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
15 quart1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
168, 2mulcld 10995 . . . . . 6 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
1716halfcld 12218 . . . . 5 (𝜑 → ((𝐴 · 𝐵) / 2) ∈ ℂ)
1815, 17subcld 11332 . . . 4 (𝜑 → (𝐶 − ((𝐴 · 𝐵) / 2)) ∈ ℂ)
19 3nn0 12251 . . . . . 6 3 ∈ ℕ0
20 expcl 13800 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
218, 19, 20sylancl 586 . . . . 5 (𝜑 → (𝐴↑3) ∈ ℂ)
224a1i 11 . . . . 5 (𝜑 → 8 ∈ ℂ)
236a1i 11 . . . . 5 (𝜑 → 8 ≠ 0)
2421, 22, 23divcld 11751 . . . 4 (𝜑 → ((𝐴↑3) / 8) ∈ ℂ)
2518, 24addcld 10994 . . 3 (𝜑 → ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) ∈ ℂ)
2614, 25eqeltrd 2839 . 2 (𝜑𝑄 ∈ ℂ)
27 quart1.r . . 3 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
28 quart1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
2915, 8mulcld 10995 . . . . . 6 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
30 4cn 12058 . . . . . . 7 4 ∈ ℂ
3130a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
32 4ne0 12081 . . . . . . 7 4 ≠ 0
3332a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
3429, 31, 33divcld 11751 . . . . 5 (𝜑 → ((𝐶 · 𝐴) / 4) ∈ ℂ)
3528, 34subcld 11332 . . . 4 (𝜑 → (𝐷 − ((𝐶 · 𝐴) / 4)) ∈ ℂ)
369, 2mulcld 10995 . . . . . 6 (𝜑 → ((𝐴↑2) · 𝐵) ∈ ℂ)
37 1nn0 12249 . . . . . . . . 9 1 ∈ ℕ0
38 6nn 12062 . . . . . . . . 9 6 ∈ ℕ
3937, 38decnncl 12457 . . . . . . . 8 16 ∈ ℕ
4039nncni 11983 . . . . . . 7 16 ∈ ℂ
4140a1i 11 . . . . . 6 (𝜑16 ∈ ℂ)
4239nnne0i 12013 . . . . . . 7 16 ≠ 0
4342a1i 11 . . . . . 6 (𝜑16 ≠ 0)
4436, 41, 43divcld 11751 . . . . 5 (𝜑 → (((𝐴↑2) · 𝐵) / 16) ∈ ℂ)
45 2nn0 12250 . . . . . . . . . 10 2 ∈ ℕ0
46 5nn0 12253 . . . . . . . . . 10 5 ∈ ℕ0
4745, 46deccl 12452 . . . . . . . . 9 25 ∈ ℕ0
4847, 38decnncl 12457 . . . . . . . 8 256 ∈ ℕ
4948nncni 11983 . . . . . . 7 256 ∈ ℂ
5048nnne0i 12013 . . . . . . 7 256 ≠ 0
513, 49, 50divcli 11717 . . . . . 6 (3 / 256) ∈ ℂ
52 4nn0 12252 . . . . . . 7 4 ∈ ℕ0
53 expcl 13800 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
548, 52, 53sylancl 586 . . . . . 6 (𝜑 → (𝐴↑4) ∈ ℂ)
55 mulcl 10955 . . . . . 6 (((3 / 256) ∈ ℂ ∧ (𝐴↑4) ∈ ℂ) → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5651, 54, 55sylancr 587 . . . . 5 (𝜑 → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5744, 56subcld 11332 . . . 4 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))) ∈ ℂ)
5835, 57addcld 10994 . . 3 (𝜑 → ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) ∈ ℂ)
5927, 58eqeltrd 2839 . 2 (𝜑𝑅 ∈ ℂ)
6013, 26, 593jca 1127 1 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  2c2 12028  3c3 12029  4c4 12030  5c5 12031  6c6 12032  8c8 12034  0cn0 12233  cdc 12437  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  quart1  26006  quartlem2  26008  quartlem3  26009  quartlem4  26010  quart  26011
  Copyright terms: Public domain W3C validator