MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1cl Structured version   Visualization version   GIF version

Theorem quart1cl 26792
Description: Closure lemmas for quart 26799. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart1.a (𝜑𝐴 ∈ ℂ)
quart1.b (𝜑𝐵 ∈ ℂ)
quart1.c (𝜑𝐶 ∈ ℂ)
quart1.d (𝜑𝐷 ∈ ℂ)
quart1.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart1.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart1.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
Assertion
Ref Expression
quart1cl (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))

Proof of Theorem quart1cl
StepHypRef Expression
1 quart1.p . . 3 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
2 quart1.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 3cn 12213 . . . . . 6 3 ∈ ℂ
4 8cn 12229 . . . . . 6 8 ∈ ℂ
5 8nn 12227 . . . . . . 7 8 ∈ ℕ
65nnne0i 12172 . . . . . 6 8 ≠ 0
73, 4, 6divcli 11870 . . . . 5 (3 / 8) ∈ ℂ
8 quart1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
98sqcld 14053 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
10 mulcl 11097 . . . . 5 (((3 / 8) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
117, 9, 10sylancr 587 . . . 4 (𝜑 → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
122, 11subcld 11479 . . 3 (𝜑 → (𝐵 − ((3 / 8) · (𝐴↑2))) ∈ ℂ)
131, 12eqeltrd 2833 . 2 (𝜑𝑃 ∈ ℂ)
14 quart1.q . . 3 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
15 quart1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
168, 2mulcld 11139 . . . . . 6 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
1716halfcld 12373 . . . . 5 (𝜑 → ((𝐴 · 𝐵) / 2) ∈ ℂ)
1815, 17subcld 11479 . . . 4 (𝜑 → (𝐶 − ((𝐴 · 𝐵) / 2)) ∈ ℂ)
19 3nn0 12406 . . . . . 6 3 ∈ ℕ0
20 expcl 13988 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
218, 19, 20sylancl 586 . . . . 5 (𝜑 → (𝐴↑3) ∈ ℂ)
224a1i 11 . . . . 5 (𝜑 → 8 ∈ ℂ)
236a1i 11 . . . . 5 (𝜑 → 8 ≠ 0)
2421, 22, 23divcld 11904 . . . 4 (𝜑 → ((𝐴↑3) / 8) ∈ ℂ)
2518, 24addcld 11138 . . 3 (𝜑 → ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) ∈ ℂ)
2614, 25eqeltrd 2833 . 2 (𝜑𝑄 ∈ ℂ)
27 quart1.r . . 3 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
28 quart1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
2915, 8mulcld 11139 . . . . . 6 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
30 4cn 12217 . . . . . . 7 4 ∈ ℂ
3130a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
32 4ne0 12240 . . . . . . 7 4 ≠ 0
3332a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
3429, 31, 33divcld 11904 . . . . 5 (𝜑 → ((𝐶 · 𝐴) / 4) ∈ ℂ)
3528, 34subcld 11479 . . . 4 (𝜑 → (𝐷 − ((𝐶 · 𝐴) / 4)) ∈ ℂ)
369, 2mulcld 11139 . . . . . 6 (𝜑 → ((𝐴↑2) · 𝐵) ∈ ℂ)
37 1nn0 12404 . . . . . . . . 9 1 ∈ ℕ0
38 6nn 12221 . . . . . . . . 9 6 ∈ ℕ
3937, 38decnncl 12614 . . . . . . . 8 16 ∈ ℕ
4039nncni 12142 . . . . . . 7 16 ∈ ℂ
4140a1i 11 . . . . . 6 (𝜑16 ∈ ℂ)
4239nnne0i 12172 . . . . . . 7 16 ≠ 0
4342a1i 11 . . . . . 6 (𝜑16 ≠ 0)
4436, 41, 43divcld 11904 . . . . 5 (𝜑 → (((𝐴↑2) · 𝐵) / 16) ∈ ℂ)
45 2nn0 12405 . . . . . . . . . 10 2 ∈ ℕ0
46 5nn0 12408 . . . . . . . . . 10 5 ∈ ℕ0
4745, 46deccl 12609 . . . . . . . . 9 25 ∈ ℕ0
4847, 38decnncl 12614 . . . . . . . 8 256 ∈ ℕ
4948nncni 12142 . . . . . . 7 256 ∈ ℂ
5048nnne0i 12172 . . . . . . 7 256 ≠ 0
513, 49, 50divcli 11870 . . . . . 6 (3 / 256) ∈ ℂ
52 4nn0 12407 . . . . . . 7 4 ∈ ℕ0
53 expcl 13988 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
548, 52, 53sylancl 586 . . . . . 6 (𝜑 → (𝐴↑4) ∈ ℂ)
55 mulcl 11097 . . . . . 6 (((3 / 256) ∈ ℂ ∧ (𝐴↑4) ∈ ℂ) → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5651, 54, 55sylancr 587 . . . . 5 (𝜑 → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5744, 56subcld 11479 . . . 4 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))) ∈ ℂ)
5835, 57addcld 11138 . . 3 (𝜑 → ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) ∈ ℂ)
5927, 58eqeltrd 2833 . 2 (𝜑𝑅 ∈ ℂ)
6013, 26, 593jca 1128 1 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351   / cdiv 11781  2c2 12187  3c3 12188  4c4 12189  5c5 12190  6c6 12191  8c8 12193  0cn0 12388  cdc 12594  cexp 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-seq 13911  df-exp 13971
This theorem is referenced by:  quart1  26794  quartlem2  26796  quartlem3  26797  quartlem4  26798  quart  26799
  Copyright terms: Public domain W3C validator