MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1cl Structured version   Visualization version   GIF version

Theorem quart1cl 26816
Description: Closure lemmas for quart 26823. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart1.a (𝜑𝐴 ∈ ℂ)
quart1.b (𝜑𝐵 ∈ ℂ)
quart1.c (𝜑𝐶 ∈ ℂ)
quart1.d (𝜑𝐷 ∈ ℂ)
quart1.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart1.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart1.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
Assertion
Ref Expression
quart1cl (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))

Proof of Theorem quart1cl
StepHypRef Expression
1 quart1.p . . 3 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
2 quart1.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 3cn 12321 . . . . . 6 3 ∈ ℂ
4 8cn 12337 . . . . . 6 8 ∈ ℂ
5 8nn 12335 . . . . . . 7 8 ∈ ℕ
65nnne0i 12280 . . . . . 6 8 ≠ 0
73, 4, 6divcli 11983 . . . . 5 (3 / 8) ∈ ℂ
8 quart1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
98sqcld 14162 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
10 mulcl 11213 . . . . 5 (((3 / 8) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
117, 9, 10sylancr 587 . . . 4 (𝜑 → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
122, 11subcld 11594 . . 3 (𝜑 → (𝐵 − ((3 / 8) · (𝐴↑2))) ∈ ℂ)
131, 12eqeltrd 2834 . 2 (𝜑𝑃 ∈ ℂ)
14 quart1.q . . 3 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
15 quart1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
168, 2mulcld 11255 . . . . . 6 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
1716halfcld 12486 . . . . 5 (𝜑 → ((𝐴 · 𝐵) / 2) ∈ ℂ)
1815, 17subcld 11594 . . . 4 (𝜑 → (𝐶 − ((𝐴 · 𝐵) / 2)) ∈ ℂ)
19 3nn0 12519 . . . . . 6 3 ∈ ℕ0
20 expcl 14097 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
218, 19, 20sylancl 586 . . . . 5 (𝜑 → (𝐴↑3) ∈ ℂ)
224a1i 11 . . . . 5 (𝜑 → 8 ∈ ℂ)
236a1i 11 . . . . 5 (𝜑 → 8 ≠ 0)
2421, 22, 23divcld 12017 . . . 4 (𝜑 → ((𝐴↑3) / 8) ∈ ℂ)
2518, 24addcld 11254 . . 3 (𝜑 → ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) ∈ ℂ)
2614, 25eqeltrd 2834 . 2 (𝜑𝑄 ∈ ℂ)
27 quart1.r . . 3 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
28 quart1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
2915, 8mulcld 11255 . . . . . 6 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
30 4cn 12325 . . . . . . 7 4 ∈ ℂ
3130a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
32 4ne0 12348 . . . . . . 7 4 ≠ 0
3332a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
3429, 31, 33divcld 12017 . . . . 5 (𝜑 → ((𝐶 · 𝐴) / 4) ∈ ℂ)
3528, 34subcld 11594 . . . 4 (𝜑 → (𝐷 − ((𝐶 · 𝐴) / 4)) ∈ ℂ)
369, 2mulcld 11255 . . . . . 6 (𝜑 → ((𝐴↑2) · 𝐵) ∈ ℂ)
37 1nn0 12517 . . . . . . . . 9 1 ∈ ℕ0
38 6nn 12329 . . . . . . . . 9 6 ∈ ℕ
3937, 38decnncl 12728 . . . . . . . 8 16 ∈ ℕ
4039nncni 12250 . . . . . . 7 16 ∈ ℂ
4140a1i 11 . . . . . 6 (𝜑16 ∈ ℂ)
4239nnne0i 12280 . . . . . . 7 16 ≠ 0
4342a1i 11 . . . . . 6 (𝜑16 ≠ 0)
4436, 41, 43divcld 12017 . . . . 5 (𝜑 → (((𝐴↑2) · 𝐵) / 16) ∈ ℂ)
45 2nn0 12518 . . . . . . . . . 10 2 ∈ ℕ0
46 5nn0 12521 . . . . . . . . . 10 5 ∈ ℕ0
4745, 46deccl 12723 . . . . . . . . 9 25 ∈ ℕ0
4847, 38decnncl 12728 . . . . . . . 8 256 ∈ ℕ
4948nncni 12250 . . . . . . 7 256 ∈ ℂ
5048nnne0i 12280 . . . . . . 7 256 ≠ 0
513, 49, 50divcli 11983 . . . . . 6 (3 / 256) ∈ ℂ
52 4nn0 12520 . . . . . . 7 4 ∈ ℕ0
53 expcl 14097 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
548, 52, 53sylancl 586 . . . . . 6 (𝜑 → (𝐴↑4) ∈ ℂ)
55 mulcl 11213 . . . . . 6 (((3 / 256) ∈ ℂ ∧ (𝐴↑4) ∈ ℂ) → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5651, 54, 55sylancr 587 . . . . 5 (𝜑 → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5744, 56subcld 11594 . . . 4 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))) ∈ ℂ)
5835, 57addcld 11254 . . 3 (𝜑 → ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) ∈ ℂ)
5927, 58eqeltrd 2834 . 2 (𝜑𝑅 ∈ ℂ)
6013, 26, 593jca 1128 1 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  wne 2932  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466   / cdiv 11894  2c2 12295  3c3 12296  4c4 12297  5c5 12298  6c6 12299  8c8 12301  0cn0 12501  cdc 12708  cexp 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-seq 14020  df-exp 14080
This theorem is referenced by:  quart1  26818  quartlem2  26820  quartlem3  26821  quartlem4  26822  quart  26823
  Copyright terms: Public domain W3C validator