MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1cl Structured version   Visualization version   GIF version

Theorem quart1cl 26912
Description: Closure lemmas for quart 26919. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart1.a (𝜑𝐴 ∈ ℂ)
quart1.b (𝜑𝐵 ∈ ℂ)
quart1.c (𝜑𝐶 ∈ ℂ)
quart1.d (𝜑𝐷 ∈ ℂ)
quart1.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart1.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart1.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
Assertion
Ref Expression
quart1cl (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))

Proof of Theorem quart1cl
StepHypRef Expression
1 quart1.p . . 3 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
2 quart1.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 3cn 12345 . . . . . 6 3 ∈ ℂ
4 8cn 12361 . . . . . 6 8 ∈ ℂ
5 8nn 12359 . . . . . . 7 8 ∈ ℕ
65nnne0i 12304 . . . . . 6 8 ≠ 0
73, 4, 6divcli 12007 . . . . 5 (3 / 8) ∈ ℂ
8 quart1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
98sqcld 14181 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
10 mulcl 11237 . . . . 5 (((3 / 8) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
117, 9, 10sylancr 587 . . . 4 (𝜑 → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
122, 11subcld 11618 . . 3 (𝜑 → (𝐵 − ((3 / 8) · (𝐴↑2))) ∈ ℂ)
131, 12eqeltrd 2839 . 2 (𝜑𝑃 ∈ ℂ)
14 quart1.q . . 3 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
15 quart1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
168, 2mulcld 11279 . . . . . 6 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
1716halfcld 12509 . . . . 5 (𝜑 → ((𝐴 · 𝐵) / 2) ∈ ℂ)
1815, 17subcld 11618 . . . 4 (𝜑 → (𝐶 − ((𝐴 · 𝐵) / 2)) ∈ ℂ)
19 3nn0 12542 . . . . . 6 3 ∈ ℕ0
20 expcl 14117 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
218, 19, 20sylancl 586 . . . . 5 (𝜑 → (𝐴↑3) ∈ ℂ)
224a1i 11 . . . . 5 (𝜑 → 8 ∈ ℂ)
236a1i 11 . . . . 5 (𝜑 → 8 ≠ 0)
2421, 22, 23divcld 12041 . . . 4 (𝜑 → ((𝐴↑3) / 8) ∈ ℂ)
2518, 24addcld 11278 . . 3 (𝜑 → ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) ∈ ℂ)
2614, 25eqeltrd 2839 . 2 (𝜑𝑄 ∈ ℂ)
27 quart1.r . . 3 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
28 quart1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
2915, 8mulcld 11279 . . . . . 6 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
30 4cn 12349 . . . . . . 7 4 ∈ ℂ
3130a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
32 4ne0 12372 . . . . . . 7 4 ≠ 0
3332a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
3429, 31, 33divcld 12041 . . . . 5 (𝜑 → ((𝐶 · 𝐴) / 4) ∈ ℂ)
3528, 34subcld 11618 . . . 4 (𝜑 → (𝐷 − ((𝐶 · 𝐴) / 4)) ∈ ℂ)
369, 2mulcld 11279 . . . . . 6 (𝜑 → ((𝐴↑2) · 𝐵) ∈ ℂ)
37 1nn0 12540 . . . . . . . . 9 1 ∈ ℕ0
38 6nn 12353 . . . . . . . . 9 6 ∈ ℕ
3937, 38decnncl 12751 . . . . . . . 8 16 ∈ ℕ
4039nncni 12274 . . . . . . 7 16 ∈ ℂ
4140a1i 11 . . . . . 6 (𝜑16 ∈ ℂ)
4239nnne0i 12304 . . . . . . 7 16 ≠ 0
4342a1i 11 . . . . . 6 (𝜑16 ≠ 0)
4436, 41, 43divcld 12041 . . . . 5 (𝜑 → (((𝐴↑2) · 𝐵) / 16) ∈ ℂ)
45 2nn0 12541 . . . . . . . . . 10 2 ∈ ℕ0
46 5nn0 12544 . . . . . . . . . 10 5 ∈ ℕ0
4745, 46deccl 12746 . . . . . . . . 9 25 ∈ ℕ0
4847, 38decnncl 12751 . . . . . . . 8 256 ∈ ℕ
4948nncni 12274 . . . . . . 7 256 ∈ ℂ
5048nnne0i 12304 . . . . . . 7 256 ≠ 0
513, 49, 50divcli 12007 . . . . . 6 (3 / 256) ∈ ℂ
52 4nn0 12543 . . . . . . 7 4 ∈ ℕ0
53 expcl 14117 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
548, 52, 53sylancl 586 . . . . . 6 (𝜑 → (𝐴↑4) ∈ ℂ)
55 mulcl 11237 . . . . . 6 (((3 / 256) ∈ ℂ ∧ (𝐴↑4) ∈ ℂ) → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5651, 54, 55sylancr 587 . . . . 5 (𝜑 → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5744, 56subcld 11618 . . . 4 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))) ∈ ℂ)
5835, 57addcld 11278 . . 3 (𝜑 → ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) ∈ ℂ)
5927, 58eqeltrd 2839 . 2 (𝜑𝑅 ∈ ℂ)
6013, 26, 593jca 1127 1 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918  2c2 12319  3c3 12320  4c4 12321  5c5 12322  6c6 12323  8c8 12325  0cn0 12524  cdc 12731  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  quart1  26914  quartlem2  26916  quartlem3  26917  quartlem4  26918  quart  26919
  Copyright terms: Public domain W3C validator