MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3b Structured version   Visualization version   GIF version

Theorem 2lgslem3b 27378
Description: Lemma for 2lgslem3b1 27382. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3b ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))

Proof of Theorem 2lgslem3b
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 7420 . . . . 5 (𝑃 = ((8 · 𝐾) + 3) → (𝑃 − 1) = (((8 · 𝐾) + 3) − 1))
32oveq1d 7428 . . . 4 (𝑃 = ((8 · 𝐾) + 3) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 3) − 1) / 2))
4 fvoveq1 7436 . . . 4 (𝑃 = ((8 · 𝐾) + 3) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 3) / 4)))
53, 4oveq12d 7431 . . 3 (𝑃 = ((8 · 𝐾) + 3) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))))
61, 5eqtrid 2781 . 2 (𝑃 = ((8 · 𝐾) + 3) → 𝑁 = (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))))
7 8nn0 12532 . . . . . . . . . . 11 8 ∈ ℕ0
87a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 22 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 12575 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 12572 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 3cn 12329 . . . . . . . . 9 3 ∈ ℂ
1312a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 3 ∈ ℂ)
14 1cnd 11238 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
1511, 13, 14addsubassd 11622 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) − 1) = ((8 · 𝐾) + (3 − 1)))
16 4t2e8 12416 . . . . . . . . . . . 12 (4 · 2) = 8
1716eqcomi 2743 . . . . . . . . . . 11 8 = (4 · 2)
1817a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 = (4 · 2))
1918oveq1d 7428 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 2) · 𝐾))
20 4cn 12333 . . . . . . . . . . 11 4 ∈ ℂ
2120a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
22 2cn 12323 . . . . . . . . . . 11 2 ∈ ℂ
2322a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
24 nn0cn 12519 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2521, 23, 24mul32d 11453 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((4 · 2) · 𝐾) = ((4 · 𝐾) · 2))
2619, 25eqtrd 2769 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 𝐾) · 2))
27 3m1e2 12376 . . . . . . . . 9 (3 − 1) = 2
2827a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (3 − 1) = 2)
2926, 28oveq12d 7431 . . . . . . 7 (𝐾 ∈ ℕ0 → ((8 · 𝐾) + (3 − 1)) = (((4 · 𝐾) · 2) + 2))
3015, 29eqtrd 2769 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) − 1) = (((4 · 𝐾) · 2) + 2))
3130oveq1d 7428 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 3) − 1) / 2) = ((((4 · 𝐾) · 2) + 2) / 2))
32 4nn0 12528 . . . . . . . . . 10 4 ∈ ℕ0
3332a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3433, 9nn0mulcld 12575 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3534nn0cnd 12572 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
3635, 23mulcld 11263 . . . . . 6 (𝐾 ∈ ℕ0 → ((4 · 𝐾) · 2) ∈ ℂ)
37 2rp 13021 . . . . . . . 8 2 ∈ ℝ+
3837a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ∈ ℝ+)
3938rpcnne0d 13068 . . . . . 6 (𝐾 ∈ ℕ0 → (2 ∈ ℂ ∧ 2 ≠ 0))
40 divdir 11929 . . . . . 6 ((((4 · 𝐾) · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((4 · 𝐾) · 2) + 2) / 2) = ((((4 · 𝐾) · 2) / 2) + (2 / 2)))
4136, 23, 39, 40syl3anc 1372 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) + 2) / 2) = ((((4 · 𝐾) · 2) / 2) + (2 / 2)))
42 2ne0 12352 . . . . . . . 8 2 ≠ 0
4342a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ≠ 0)
4435, 23, 43divcan4d 12031 . . . . . 6 (𝐾 ∈ ℕ0 → (((4 · 𝐾) · 2) / 2) = (4 · 𝐾))
45 2div2e1 12389 . . . . . . 7 (2 / 2) = 1
4645a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → (2 / 2) = 1)
4744, 46oveq12d 7431 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) / 2) + (2 / 2)) = ((4 · 𝐾) + 1))
4831, 41, 473eqtrd 2773 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 3) − 1) / 2) = ((4 · 𝐾) + 1))
49 4ne0 12356 . . . . . . . . . 10 4 ≠ 0
5020, 49pm3.2i 470 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
5150a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
52 divdir 11929 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 3 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 3) / 4) = (((8 · 𝐾) / 4) + (3 / 4)))
5311, 13, 51, 52syl3anc 1372 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) / 4) = (((8 · 𝐾) / 4) + (3 / 4)))
54 8cn 12345 . . . . . . . . . . 11 8 ∈ ℂ
5554a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
56 div23 11923 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
5755, 24, 51, 56syl3anc 1372 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
5817oveq1i 7423 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
5922, 20, 49divcan3i 11995 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
6058, 59eqtri 2757 . . . . . . . . . . 11 (8 / 4) = 2
6160a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
6261oveq1d 7428 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
6357, 62eqtrd 2769 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
6463oveq1d 7428 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (3 / 4)) = ((2 · 𝐾) + (3 / 4)))
6553, 64eqtrd 2769 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) / 4) = ((2 · 𝐾) + (3 / 4)))
6665fveq2d 6890 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 3) / 4)) = (⌊‘((2 · 𝐾) + (3 / 4))))
67 3lt4 12422 . . . . . 6 3 < 4
68 2nn0 12526 . . . . . . . . . 10 2 ∈ ℕ0
6968a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
7069, 9nn0mulcld 12575 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
7170nn0zd 12622 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
72 3nn0 12527 . . . . . . . 8 3 ∈ ℕ0
7372a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 3 ∈ ℕ0)
74 4nn 12331 . . . . . . . 8 4 ∈ ℕ
7574a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
76 adddivflid 13840 . . . . . . 7 (((2 · 𝐾) ∈ ℤ ∧ 3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾)))
7771, 73, 75, 76syl3anc 1372 . . . . . 6 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾)))
7867, 77mpbii 233 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾))
7966, 78eqtrd 2769 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 3) / 4)) = (2 · 𝐾))
8048, 79oveq12d 7431 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))) = (((4 · 𝐾) + 1) − (2 · 𝐾)))
8170nn0cnd 12572 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
8235, 14, 81addsubd 11623 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) + 1) − (2 · 𝐾)) = (((4 · 𝐾) − (2 · 𝐾)) + 1))
83 2t2e4 12412 . . . . . . . . . 10 (2 · 2) = 4
8483eqcomi 2743 . . . . . . . . 9 4 = (2 · 2)
8584a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
8685oveq1d 7428 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
8723, 23, 24mulassd 11266 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
8886, 87eqtrd 2769 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
8988oveq1d 7428 . . . . 5 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
90 2txmxeqx 12388 . . . . . 6 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
9181, 90syl 17 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
9289, 91eqtrd 2769 . . . 4 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = (2 · 𝐾))
9392oveq1d 7428 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) − (2 · 𝐾)) + 1) = ((2 · 𝐾) + 1))
9480, 82, 933eqtrd 2773 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))) = ((2 · 𝐾) + 1))
956, 94sylan9eqr 2791 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142   < clt 11277  cmin 11474   / cdiv 11902  cn 12248  2c2 12303  3c3 12304  4c4 12305  8c8 12309  0cn0 12509  cz 12596  +crp 13016  cfl 13812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fl 13814
This theorem is referenced by:  2lgslem3b1  27382
  Copyright terms: Public domain W3C validator