MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3b Structured version   Visualization version   GIF version

Theorem 2lgslem3b 27343
Description: Lemma for 2lgslem3b1 27347. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3b ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))

Proof of Theorem 2lgslem3b
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 7427 . . . . 5 (𝑃 = ((8 · 𝐾) + 3) → (𝑃 − 1) = (((8 · 𝐾) + 3) − 1))
32oveq1d 7435 . . . 4 (𝑃 = ((8 · 𝐾) + 3) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 3) − 1) / 2))
4 fvoveq1 7443 . . . 4 (𝑃 = ((8 · 𝐾) + 3) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 3) / 4)))
53, 4oveq12d 7438 . . 3 (𝑃 = ((8 · 𝐾) + 3) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))))
61, 5eqtrid 2780 . 2 (𝑃 = ((8 · 𝐾) + 3) → 𝑁 = (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))))
7 8nn0 12526 . . . . . . . . . . 11 8 ∈ ℕ0
87a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 22 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 12568 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 12565 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 3cn 12324 . . . . . . . . 9 3 ∈ ℂ
1312a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 3 ∈ ℂ)
14 1cnd 11240 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
1511, 13, 14addsubassd 11622 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) − 1) = ((8 · 𝐾) + (3 − 1)))
16 4t2e8 12411 . . . . . . . . . . . 12 (4 · 2) = 8
1716eqcomi 2737 . . . . . . . . . . 11 8 = (4 · 2)
1817a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 = (4 · 2))
1918oveq1d 7435 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 2) · 𝐾))
20 4cn 12328 . . . . . . . . . . 11 4 ∈ ℂ
2120a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
22 2cn 12318 . . . . . . . . . . 11 2 ∈ ℂ
2322a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
24 nn0cn 12513 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2521, 23, 24mul32d 11455 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((4 · 2) · 𝐾) = ((4 · 𝐾) · 2))
2619, 25eqtrd 2768 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 𝐾) · 2))
27 3m1e2 12371 . . . . . . . . 9 (3 − 1) = 2
2827a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (3 − 1) = 2)
2926, 28oveq12d 7438 . . . . . . 7 (𝐾 ∈ ℕ0 → ((8 · 𝐾) + (3 − 1)) = (((4 · 𝐾) · 2) + 2))
3015, 29eqtrd 2768 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) − 1) = (((4 · 𝐾) · 2) + 2))
3130oveq1d 7435 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 3) − 1) / 2) = ((((4 · 𝐾) · 2) + 2) / 2))
32 4nn0 12522 . . . . . . . . . 10 4 ∈ ℕ0
3332a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3433, 9nn0mulcld 12568 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3534nn0cnd 12565 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
3635, 23mulcld 11265 . . . . . 6 (𝐾 ∈ ℕ0 → ((4 · 𝐾) · 2) ∈ ℂ)
37 2rp 13012 . . . . . . . 8 2 ∈ ℝ+
3837a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ∈ ℝ+)
3938rpcnne0d 13058 . . . . . 6 (𝐾 ∈ ℕ0 → (2 ∈ ℂ ∧ 2 ≠ 0))
40 divdir 11928 . . . . . 6 ((((4 · 𝐾) · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((4 · 𝐾) · 2) + 2) / 2) = ((((4 · 𝐾) · 2) / 2) + (2 / 2)))
4136, 23, 39, 40syl3anc 1369 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) + 2) / 2) = ((((4 · 𝐾) · 2) / 2) + (2 / 2)))
42 2ne0 12347 . . . . . . . 8 2 ≠ 0
4342a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ≠ 0)
4435, 23, 43divcan4d 12027 . . . . . 6 (𝐾 ∈ ℕ0 → (((4 · 𝐾) · 2) / 2) = (4 · 𝐾))
45 2div2e1 12384 . . . . . . 7 (2 / 2) = 1
4645a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → (2 / 2) = 1)
4744, 46oveq12d 7438 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) / 2) + (2 / 2)) = ((4 · 𝐾) + 1))
4831, 41, 473eqtrd 2772 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 3) − 1) / 2) = ((4 · 𝐾) + 1))
49 4ne0 12351 . . . . . . . . . 10 4 ≠ 0
5020, 49pm3.2i 470 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
5150a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
52 divdir 11928 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 3 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 3) / 4) = (((8 · 𝐾) / 4) + (3 / 4)))
5311, 13, 51, 52syl3anc 1369 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) / 4) = (((8 · 𝐾) / 4) + (3 / 4)))
54 8cn 12340 . . . . . . . . . . 11 8 ∈ ℂ
5554a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
56 div23 11922 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
5755, 24, 51, 56syl3anc 1369 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
5817oveq1i 7430 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
5922, 20, 49divcan3i 11991 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
6058, 59eqtri 2756 . . . . . . . . . . 11 (8 / 4) = 2
6160a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
6261oveq1d 7435 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
6357, 62eqtrd 2768 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
6463oveq1d 7435 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (3 / 4)) = ((2 · 𝐾) + (3 / 4)))
6553, 64eqtrd 2768 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 3) / 4) = ((2 · 𝐾) + (3 / 4)))
6665fveq2d 6901 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 3) / 4)) = (⌊‘((2 · 𝐾) + (3 / 4))))
67 3lt4 12417 . . . . . 6 3 < 4
68 2nn0 12520 . . . . . . . . . 10 2 ∈ ℕ0
6968a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
7069, 9nn0mulcld 12568 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
7170nn0zd 12615 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
72 3nn0 12521 . . . . . . . 8 3 ∈ ℕ0
7372a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 3 ∈ ℕ0)
74 4nn 12326 . . . . . . . 8 4 ∈ ℕ
7574a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
76 adddivflid 13816 . . . . . . 7 (((2 · 𝐾) ∈ ℤ ∧ 3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾)))
7771, 73, 75, 76syl3anc 1369 . . . . . 6 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾)))
7867, 77mpbii 232 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (3 / 4))) = (2 · 𝐾))
7966, 78eqtrd 2768 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 3) / 4)) = (2 · 𝐾))
8048, 79oveq12d 7438 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))) = (((4 · 𝐾) + 1) − (2 · 𝐾)))
8170nn0cnd 12565 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
8235, 14, 81addsubd 11623 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) + 1) − (2 · 𝐾)) = (((4 · 𝐾) − (2 · 𝐾)) + 1))
83 2t2e4 12407 . . . . . . . . . 10 (2 · 2) = 4
8483eqcomi 2737 . . . . . . . . 9 4 = (2 · 2)
8584a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
8685oveq1d 7435 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
8723, 23, 24mulassd 11268 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
8886, 87eqtrd 2768 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
8988oveq1d 7435 . . . . 5 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
90 2txmxeqx 12383 . . . . . 6 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
9181, 90syl 17 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
9289, 91eqtrd 2768 . . . 4 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = (2 · 𝐾))
9392oveq1d 7435 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) − (2 · 𝐾)) + 1) = ((2 · 𝐾) + 1))
9480, 82, 933eqtrd 2772 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 3) − 1) / 2) − (⌊‘(((8 · 𝐾) + 3) / 4))) = ((2 · 𝐾) + 1))
956, 94sylan9eqr 2790 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148  cfv 6548  (class class class)co 7420  cc 11137  0cc0 11139  1c1 11140   + caddc 11142   · cmul 11144   < clt 11279  cmin 11475   / cdiv 11902  cn 12243  2c2 12298  3c3 12299  4c4 12300  8c8 12304  0cn0 12503  cz 12589  +crp 13007  cfl 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fl 13790
This theorem is referenced by:  2lgslem3b1  27347
  Copyright terms: Public domain W3C validator