MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3a Structured version   Visualization version   GIF version

Theorem 2lgslem3a 27314
Description: Lemma for 2lgslem3a1 27318. (Contributed by AV, 14-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3a ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))

Proof of Theorem 2lgslem3a
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 7397 . . . . 5 (𝑃 = ((8 · 𝐾) + 1) → (𝑃 − 1) = (((8 · 𝐾) + 1) − 1))
32oveq1d 7405 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 1) − 1) / 2))
4 fvoveq1 7413 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 1) / 4)))
53, 4oveq12d 7408 . . 3 (𝑃 = ((8 · 𝐾) + 1) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
61, 5eqtrid 2777 . 2 (𝑃 = ((8 · 𝐾) + 1) → 𝑁 = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
7 8nn0 12472 . . . . . . . . . 10 8 ∈ ℕ0
87a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 12515 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 12512 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 pncan1 11609 . . . . . . 7 ((8 · 𝐾) ∈ ℂ → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1311, 12syl 17 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1413oveq1d 7405 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = ((8 · 𝐾) / 2))
15 4cn 12278 . . . . . . . . . . 11 4 ∈ ℂ
16 2cn 12268 . . . . . . . . . . 11 2 ∈ ℂ
17 4t2e8 12356 . . . . . . . . . . 11 (4 · 2) = 8
1815, 16, 17mulcomli 11190 . . . . . . . . . 10 (2 · 4) = 8
1918eqcomi 2739 . . . . . . . . 9 8 = (2 · 4)
2019a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 8 = (2 · 4))
2120oveq1d 7405 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((2 · 4) · 𝐾))
2216a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
2315a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
24 nn0cn 12459 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2522, 23, 24mulassd 11204 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 4) · 𝐾) = (2 · (4 · 𝐾)))
2621, 25eqtrd 2765 . . . . . 6 (𝐾 ∈ ℕ0 → (8 · 𝐾) = (2 · (4 · 𝐾)))
2726oveq1d 7405 . . . . 5 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 2) = ((2 · (4 · 𝐾)) / 2))
28 4nn0 12468 . . . . . . . . 9 4 ∈ ℕ0
2928a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3029, 9nn0mulcld 12515 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3130nn0cnd 12512 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
32 2ne0 12297 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 2 ≠ 0)
3431, 22, 33divcan3d 11970 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (4 · 𝐾)) / 2) = (4 · 𝐾))
3514, 27, 343eqtrd 2769 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = (4 · 𝐾))
36 1cnd 11176 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
37 4ne0 12301 . . . . . . . . . 10 4 ≠ 0
3815, 37pm3.2i 470 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
3938a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
40 divdir 11869 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
4111, 36, 39, 40syl3anc 1373 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
42 8cn 12290 . . . . . . . . . . 11 8 ∈ ℂ
4342a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
44 div23 11863 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4543, 24, 39, 44syl3anc 1373 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4617eqcomi 2739 . . . . . . . . . . . . 13 8 = (4 · 2)
4746oveq1i 7400 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
4816, 15, 37divcan3i 11935 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
4947, 48eqtri 2753 . . . . . . . . . . 11 (8 / 4) = 2
5049a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
5150oveq1d 7405 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
5245, 51eqtrd 2765 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
5352oveq1d 7405 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (1 / 4)) = ((2 · 𝐾) + (1 / 4)))
5441, 53eqtrd 2765 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = ((2 · 𝐾) + (1 / 4)))
5554fveq2d 6865 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (⌊‘((2 · 𝐾) + (1 / 4))))
56 1lt4 12364 . . . . . 6 1 < 4
57 2nn0 12466 . . . . . . . . . 10 2 ∈ ℕ0
5857a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
5958, 9nn0mulcld 12515 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
6059nn0zd 12562 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
61 1nn0 12465 . . . . . . . 8 1 ∈ ℕ0
6261a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 1 ∈ ℕ0)
63 4nn 12276 . . . . . . . 8 4 ∈ ℕ
6463a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
65 adddivflid 13787 . . . . . . 7 (((2 · 𝐾) ∈ ℤ ∧ 1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6660, 62, 64, 65syl3anc 1373 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6756, 66mpbii 233 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾))
6855, 67eqtrd 2765 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (2 · 𝐾))
6935, 68oveq12d 7408 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = ((4 · 𝐾) − (2 · 𝐾)))
70 2t2e4 12352 . . . . . . . 8 (2 · 2) = 4
7170eqcomi 2739 . . . . . . 7 4 = (2 · 2)
7271a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
7372oveq1d 7405 . . . . 5 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
7422, 22, 24mulassd 11204 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
7573, 74eqtrd 2765 . . . 4 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
7675oveq1d 7405 . . 3 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
7759nn0cnd 12512 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
78 2txmxeqx 12328 . . . 4 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
7977, 78syl 17 . . 3 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
8069, 76, 793eqtrd 2769 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = (2 · 𝐾))
816, 80sylan9eqr 2787 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  4c4 12250  8c8 12254  0cn0 12449  cz 12536  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761
This theorem is referenced by:  2lgslem3a1  27318
  Copyright terms: Public domain W3C validator