MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3a Structured version   Visualization version   GIF version

Theorem 2lgslem3a 25899
Description: Lemma for 2lgslem3a1 25903. (Contributed by AV, 14-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3a ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))

Proof of Theorem 2lgslem3a
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 7152 . . . . 5 (𝑃 = ((8 · 𝐾) + 1) → (𝑃 − 1) = (((8 · 𝐾) + 1) − 1))
32oveq1d 7160 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 1) − 1) / 2))
4 fvoveq1 7168 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 1) / 4)))
53, 4oveq12d 7163 . . 3 (𝑃 = ((8 · 𝐾) + 1) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
61, 5syl5eq 2865 . 2 (𝑃 = ((8 · 𝐾) + 1) → 𝑁 = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
7 8nn0 11908 . . . . . . . . . 10 8 ∈ ℕ0
87a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 11948 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 11945 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 pncan1 11052 . . . . . . 7 ((8 · 𝐾) ∈ ℂ → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1311, 12syl 17 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1413oveq1d 7160 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = ((8 · 𝐾) / 2))
15 4cn 11710 . . . . . . . . . . 11 4 ∈ ℂ
16 2cn 11700 . . . . . . . . . . 11 2 ∈ ℂ
17 4t2e8 11793 . . . . . . . . . . 11 (4 · 2) = 8
1815, 16, 17mulcomli 10638 . . . . . . . . . 10 (2 · 4) = 8
1918eqcomi 2827 . . . . . . . . 9 8 = (2 · 4)
2019a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 8 = (2 · 4))
2120oveq1d 7160 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((2 · 4) · 𝐾))
2216a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
2315a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
24 nn0cn 11895 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2522, 23, 24mulassd 10652 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 4) · 𝐾) = (2 · (4 · 𝐾)))
2621, 25eqtrd 2853 . . . . . 6 (𝐾 ∈ ℕ0 → (8 · 𝐾) = (2 · (4 · 𝐾)))
2726oveq1d 7160 . . . . 5 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 2) = ((2 · (4 · 𝐾)) / 2))
28 4nn0 11904 . . . . . . . . 9 4 ∈ ℕ0
2928a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3029, 9nn0mulcld 11948 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3130nn0cnd 11945 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
32 2ne0 11729 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 2 ≠ 0)
3431, 22, 33divcan3d 11409 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (4 · 𝐾)) / 2) = (4 · 𝐾))
3514, 27, 343eqtrd 2857 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = (4 · 𝐾))
36 1cnd 10624 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
37 4ne0 11733 . . . . . . . . . 10 4 ≠ 0
3815, 37pm3.2i 471 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
3938a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
40 divdir 11311 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
4111, 36, 39, 40syl3anc 1363 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
42 8cn 11722 . . . . . . . . . . 11 8 ∈ ℂ
4342a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
44 div23 11305 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4543, 24, 39, 44syl3anc 1363 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4617eqcomi 2827 . . . . . . . . . . . . 13 8 = (4 · 2)
4746oveq1i 7155 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
4816, 15, 37divcan3i 11374 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
4947, 48eqtri 2841 . . . . . . . . . . 11 (8 / 4) = 2
5049a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
5150oveq1d 7160 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
5245, 51eqtrd 2853 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
5352oveq1d 7160 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (1 / 4)) = ((2 · 𝐾) + (1 / 4)))
5441, 53eqtrd 2853 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = ((2 · 𝐾) + (1 / 4)))
5554fveq2d 6667 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (⌊‘((2 · 𝐾) + (1 / 4))))
56 1lt4 11801 . . . . . 6 1 < 4
57 2nn0 11902 . . . . . . . . . 10 2 ∈ ℕ0
5857a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
5958, 9nn0mulcld 11948 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
6059nn0zd 12073 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
61 1nn0 11901 . . . . . . . 8 1 ∈ ℕ0
6261a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 1 ∈ ℕ0)
63 4nn 11708 . . . . . . . 8 4 ∈ ℕ
6463a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
65 adddivflid 13176 . . . . . . 7 (((2 · 𝐾) ∈ ℤ ∧ 1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6660, 62, 64, 65syl3anc 1363 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6756, 66mpbii 234 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾))
6855, 67eqtrd 2853 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (2 · 𝐾))
6935, 68oveq12d 7163 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = ((4 · 𝐾) − (2 · 𝐾)))
70 2t2e4 11789 . . . . . . . 8 (2 · 2) = 4
7170eqcomi 2827 . . . . . . 7 4 = (2 · 2)
7271a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
7372oveq1d 7160 . . . . 5 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
7422, 22, 24mulassd 10652 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
7573, 74eqtrd 2853 . . . 4 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
7675oveq1d 7160 . . 3 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
7759nn0cnd 11945 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
78 2txmxeqx 11765 . . . 4 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
7977, 78syl 17 . . 3 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
8069, 76, 793eqtrd 2857 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = (2 · 𝐾))
816, 80sylan9eqr 2875 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  4c4 11682  8c8 11686  0cn0 11885  cz 11969  cfl 13148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13150
This theorem is referenced by:  2lgslem3a1  25903
  Copyright terms: Public domain W3C validator