MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3a Structured version   Visualization version   GIF version

Theorem 2lgslem3a 26304
Description: Lemma for 2lgslem3a1 26308. (Contributed by AV, 14-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3a ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))

Proof of Theorem 2lgslem3a
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 7239 . . . . 5 (𝑃 = ((8 · 𝐾) + 1) → (𝑃 − 1) = (((8 · 𝐾) + 1) − 1))
32oveq1d 7247 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 1) − 1) / 2))
4 fvoveq1 7255 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 1) / 4)))
53, 4oveq12d 7250 . . 3 (𝑃 = ((8 · 𝐾) + 1) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
61, 5syl5eq 2791 . 2 (𝑃 = ((8 · 𝐾) + 1) → 𝑁 = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
7 8nn0 12138 . . . . . . . . . 10 8 ∈ ℕ0
87a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 12180 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 12177 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 pncan1 11281 . . . . . . 7 ((8 · 𝐾) ∈ ℂ → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1311, 12syl 17 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1413oveq1d 7247 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = ((8 · 𝐾) / 2))
15 4cn 11940 . . . . . . . . . . 11 4 ∈ ℂ
16 2cn 11930 . . . . . . . . . . 11 2 ∈ ℂ
17 4t2e8 12023 . . . . . . . . . . 11 (4 · 2) = 8
1815, 16, 17mulcomli 10867 . . . . . . . . . 10 (2 · 4) = 8
1918eqcomi 2747 . . . . . . . . 9 8 = (2 · 4)
2019a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 8 = (2 · 4))
2120oveq1d 7247 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((2 · 4) · 𝐾))
2216a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
2315a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
24 nn0cn 12125 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2522, 23, 24mulassd 10881 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 4) · 𝐾) = (2 · (4 · 𝐾)))
2621, 25eqtrd 2778 . . . . . 6 (𝐾 ∈ ℕ0 → (8 · 𝐾) = (2 · (4 · 𝐾)))
2726oveq1d 7247 . . . . 5 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 2) = ((2 · (4 · 𝐾)) / 2))
28 4nn0 12134 . . . . . . . . 9 4 ∈ ℕ0
2928a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3029, 9nn0mulcld 12180 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3130nn0cnd 12177 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
32 2ne0 11959 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 2 ≠ 0)
3431, 22, 33divcan3d 11638 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (4 · 𝐾)) / 2) = (4 · 𝐾))
3514, 27, 343eqtrd 2782 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = (4 · 𝐾))
36 1cnd 10853 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
37 4ne0 11963 . . . . . . . . . 10 4 ≠ 0
3815, 37pm3.2i 474 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
3938a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
40 divdir 11540 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
4111, 36, 39, 40syl3anc 1373 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
42 8cn 11952 . . . . . . . . . . 11 8 ∈ ℂ
4342a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
44 div23 11534 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4543, 24, 39, 44syl3anc 1373 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4617eqcomi 2747 . . . . . . . . . . . . 13 8 = (4 · 2)
4746oveq1i 7242 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
4816, 15, 37divcan3i 11603 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
4947, 48eqtri 2766 . . . . . . . . . . 11 (8 / 4) = 2
5049a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
5150oveq1d 7247 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
5245, 51eqtrd 2778 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
5352oveq1d 7247 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (1 / 4)) = ((2 · 𝐾) + (1 / 4)))
5441, 53eqtrd 2778 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = ((2 · 𝐾) + (1 / 4)))
5554fveq2d 6740 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (⌊‘((2 · 𝐾) + (1 / 4))))
56 1lt4 12031 . . . . . 6 1 < 4
57 2nn0 12132 . . . . . . . . . 10 2 ∈ ℕ0
5857a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
5958, 9nn0mulcld 12180 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
6059nn0zd 12305 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
61 1nn0 12131 . . . . . . . 8 1 ∈ ℕ0
6261a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 1 ∈ ℕ0)
63 4nn 11938 . . . . . . . 8 4 ∈ ℕ
6463a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
65 adddivflid 13418 . . . . . . 7 (((2 · 𝐾) ∈ ℤ ∧ 1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6660, 62, 64, 65syl3anc 1373 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6756, 66mpbii 236 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾))
6855, 67eqtrd 2778 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (2 · 𝐾))
6935, 68oveq12d 7250 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = ((4 · 𝐾) − (2 · 𝐾)))
70 2t2e4 12019 . . . . . . . 8 (2 · 2) = 4
7170eqcomi 2747 . . . . . . 7 4 = (2 · 2)
7271a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
7372oveq1d 7247 . . . . 5 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
7422, 22, 24mulassd 10881 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
7573, 74eqtrd 2778 . . . 4 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
7675oveq1d 7247 . . 3 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
7759nn0cnd 12177 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
78 2txmxeqx 11995 . . . 4 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
7977, 78syl 17 . . 3 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
8069, 76, 793eqtrd 2782 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = (2 · 𝐾))
816, 80sylan9eqr 2801 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  wne 2941   class class class wbr 5068  cfv 6398  (class class class)co 7232  cc 10752  0cc0 10754  1c1 10755   + caddc 10757   · cmul 10759   < clt 10892  cmin 11087   / cdiv 11514  cn 11855  2c2 11910  4c4 11912  8c8 11916  0cn0 12115  cz 12201  cfl 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-sup 9083  df-inf 9084  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-n0 12116  df-z 12202  df-uz 12464  df-rp 12612  df-fl 13392
This theorem is referenced by:  2lgslem3a1  26308
  Copyright terms: Public domain W3C validator