MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3a Structured version   Visualization version   GIF version

Theorem 2lgslem3a 27357
Description: Lemma for 2lgslem3a1 27361. (Contributed by AV, 14-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3a ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))

Proof of Theorem 2lgslem3a
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 7410 . . . . 5 (𝑃 = ((8 · 𝐾) + 1) → (𝑃 − 1) = (((8 · 𝐾) + 1) − 1))
32oveq1d 7418 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 1) − 1) / 2))
4 fvoveq1 7426 . . . 4 (𝑃 = ((8 · 𝐾) + 1) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 1) / 4)))
53, 4oveq12d 7421 . . 3 (𝑃 = ((8 · 𝐾) + 1) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
61, 5eqtrid 2782 . 2 (𝑃 = ((8 · 𝐾) + 1) → 𝑁 = (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))))
7 8nn0 12522 . . . . . . . . . 10 8 ∈ ℕ0
87a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 12565 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 12562 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 pncan1 11659 . . . . . . 7 ((8 · 𝐾) ∈ ℂ → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1311, 12syl 17 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) − 1) = (8 · 𝐾))
1413oveq1d 7418 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = ((8 · 𝐾) / 2))
15 4cn 12323 . . . . . . . . . . 11 4 ∈ ℂ
16 2cn 12313 . . . . . . . . . . 11 2 ∈ ℂ
17 4t2e8 12406 . . . . . . . . . . 11 (4 · 2) = 8
1815, 16, 17mulcomli 11242 . . . . . . . . . 10 (2 · 4) = 8
1918eqcomi 2744 . . . . . . . . 9 8 = (2 · 4)
2019a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 8 = (2 · 4))
2120oveq1d 7418 . . . . . . 7 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((2 · 4) · 𝐾))
2216a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
2315a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
24 nn0cn 12509 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2522, 23, 24mulassd 11256 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 4) · 𝐾) = (2 · (4 · 𝐾)))
2621, 25eqtrd 2770 . . . . . 6 (𝐾 ∈ ℕ0 → (8 · 𝐾) = (2 · (4 · 𝐾)))
2726oveq1d 7418 . . . . 5 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 2) = ((2 · (4 · 𝐾)) / 2))
28 4nn0 12518 . . . . . . . . 9 4 ∈ ℕ0
2928a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3029, 9nn0mulcld 12565 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3130nn0cnd 12562 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
32 2ne0 12342 . . . . . . 7 2 ≠ 0
3332a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 2 ≠ 0)
3431, 22, 33divcan3d 12020 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (4 · 𝐾)) / 2) = (4 · 𝐾))
3514, 27, 343eqtrd 2774 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 1) − 1) / 2) = (4 · 𝐾))
36 1cnd 11228 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
37 4ne0 12346 . . . . . . . . . 10 4 ≠ 0
3815, 37pm3.2i 470 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
3938a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
40 divdir 11919 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
4111, 36, 39, 40syl3anc 1373 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = (((8 · 𝐾) / 4) + (1 / 4)))
42 8cn 12335 . . . . . . . . . . 11 8 ∈ ℂ
4342a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
44 div23 11913 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4543, 24, 39, 44syl3anc 1373 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
4617eqcomi 2744 . . . . . . . . . . . . 13 8 = (4 · 2)
4746oveq1i 7413 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
4816, 15, 37divcan3i 11985 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
4947, 48eqtri 2758 . . . . . . . . . . 11 (8 / 4) = 2
5049a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
5150oveq1d 7418 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
5245, 51eqtrd 2770 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
5352oveq1d 7418 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (1 / 4)) = ((2 · 𝐾) + (1 / 4)))
5441, 53eqtrd 2770 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 1) / 4) = ((2 · 𝐾) + (1 / 4)))
5554fveq2d 6879 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (⌊‘((2 · 𝐾) + (1 / 4))))
56 1lt4 12414 . . . . . 6 1 < 4
57 2nn0 12516 . . . . . . . . . 10 2 ∈ ℕ0
5857a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
5958, 9nn0mulcld 12565 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
6059nn0zd 12612 . . . . . . 7 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
61 1nn0 12515 . . . . . . . 8 1 ∈ ℕ0
6261a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 1 ∈ ℕ0)
63 4nn 12321 . . . . . . . 8 4 ∈ ℕ
6463a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
65 adddivflid 13833 . . . . . . 7 (((2 · 𝐾) ∈ ℤ ∧ 1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6660, 62, 64, 65syl3anc 1373 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)))
6756, 66mpbii 233 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾))
6855, 67eqtrd 2770 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 1) / 4)) = (2 · 𝐾))
6935, 68oveq12d 7421 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = ((4 · 𝐾) − (2 · 𝐾)))
70 2t2e4 12402 . . . . . . . 8 (2 · 2) = 4
7170eqcomi 2744 . . . . . . 7 4 = (2 · 2)
7271a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
7372oveq1d 7418 . . . . 5 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
7422, 22, 24mulassd 11256 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
7573, 74eqtrd 2770 . . . 4 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
7675oveq1d 7418 . . 3 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
7759nn0cnd 12562 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
78 2txmxeqx 12378 . . . 4 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
7977, 78syl 17 . . 3 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
8069, 76, 793eqtrd 2774 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = (2 · 𝐾))
816, 80sylan9eqr 2792 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  4c4 12295  8c8 12299  0cn0 12499  cz 12586  cfl 13805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fl 13807
This theorem is referenced by:  2lgslem3a1  27361
  Copyright terms: Public domain W3C validator