MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3a1 Structured version   Visualization version   GIF version

Theorem 2lgslem3a1 27459
Description: Lemma 1 for 2lgslem3 27463. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3a1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)

Proof of Theorem 2lgslem3a1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12531 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 12359 . . . . 5 8 ∈ ℕ
3 nnrp 13044 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13953 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1)))
61, 4, 5sylancl 586 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1)))
7 simpr 484 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 12534 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 12361 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 11280 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7446 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 1) = ((8 · 𝑘) + 1))
1413eqeq2d 2746 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 1) ↔ 𝑃 = ((8 · 𝑘) + 1)))
1514biimpa 476 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑃 = ((8 · 𝑘) + 1))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3a 27455 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 1)) → 𝑁 = (2 · 𝑘))
187, 15, 17syl2an2r 685 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑁 = (2 · 𝑘))
19 oveq1 7438 . . . . . 6 (𝑁 = (2 · 𝑘) → (𝑁 mod 2) = ((2 · 𝑘) mod 2))
20 2cnd 12342 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
2120, 8mulcomd 11280 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 · 2))
2221oveq1d 7446 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = ((𝑘 · 2) mod 2))
23 nn0z 12636 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
24 2rp 13037 . . . . . . . 8 2 ∈ ℝ+
25 mulmod0 13914 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ∈ ℝ+) → ((𝑘 · 2) mod 2) = 0)
2623, 24, 25sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑘 · 2) mod 2) = 0)
2722, 26eqtrd 2775 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = 0)
2819, 27sylan9eqr 2797 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = (2 · 𝑘)) → (𝑁 mod 2) = 0)
297, 18, 28syl2an2r 685 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → (𝑁 mod 2) = 0)
3029rexlimdva2 3155 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1) → (𝑁 mod 2) = 0))
316, 30syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → (𝑁 mod 2) = 0))
3231imp 406 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  4c4 12321  8c8 12325  0cn0 12524  cz 12611  +crp 13032  cfl 13827   mod cmo 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fl 13829  df-mod 13907
This theorem is referenced by:  2lgslem3  27463
  Copyright terms: Public domain W3C validator