| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgslem3a1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for 2lgslem3 27322. (Contributed by AV, 15-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
| Ref | Expression |
|---|---|
| 2lgslem3a1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 12456 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 2 | 8nn 12288 | . . . . 5 ⊢ 8 ∈ ℕ | |
| 3 | nnrp 12970 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 8 ∈ ℝ+ |
| 5 | modmuladdnn0 13887 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1))) | |
| 6 | 1, 4, 5 | sylancl 586 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1))) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 8 | nn0cn 12459 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
| 9 | 8cn 12290 | . . . . . . . . . . . 12 ⊢ 8 ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
| 11 | 8, 10 | mulcomd 11202 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
| 12 | 11 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
| 13 | 12 | oveq1d 7405 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 1) = ((8 · 𝑘) + 1)) |
| 14 | 13 | eqeq2d 2741 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 1) ↔ 𝑃 = ((8 · 𝑘) + 1))) |
| 15 | 14 | biimpa 476 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑃 = ((8 · 𝑘) + 1)) |
| 16 | 2lgslem2.n | . . . . . . 7 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
| 17 | 16 | 2lgslem3a 27314 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 1)) → 𝑁 = (2 · 𝑘)) |
| 18 | 7, 15, 17 | syl2an2r 685 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑁 = (2 · 𝑘)) |
| 19 | oveq1 7397 | . . . . . 6 ⊢ (𝑁 = (2 · 𝑘) → (𝑁 mod 2) = ((2 · 𝑘) mod 2)) | |
| 20 | 2cnd 12271 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℂ) | |
| 21 | 20, 8 | mulcomd 11202 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 · 2)) |
| 22 | 21 | oveq1d 7405 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = ((𝑘 · 2) mod 2)) |
| 23 | nn0z 12561 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
| 24 | 2rp 12963 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
| 25 | mulmod0 13846 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℤ ∧ 2 ∈ ℝ+) → ((𝑘 · 2) mod 2) = 0) | |
| 26 | 23, 24, 25 | sylancl 586 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 · 2) mod 2) = 0) |
| 27 | 22, 26 | eqtrd 2765 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = 0) |
| 28 | 19, 27 | sylan9eqr 2787 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = (2 · 𝑘)) → (𝑁 mod 2) = 0) |
| 29 | 7, 18, 28 | syl2an2r 685 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → (𝑁 mod 2) = 0) |
| 30 | 29 | rexlimdva2 3137 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1) → (𝑁 mod 2) = 0)) |
| 31 | 6, 30 | syld 47 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → (𝑁 mod 2) = 0)) |
| 32 | 31 | imp 406 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 / cdiv 11842 ℕcn 12193 2c2 12248 4c4 12250 8c8 12254 ℕ0cn0 12449 ℤcz 12536 ℝ+crp 12958 ⌊cfl 13759 mod cmo 13838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fl 13761 df-mod 13839 |
| This theorem is referenced by: 2lgslem3 27322 |
| Copyright terms: Public domain | W3C validator |