MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3b1 Structured version   Visualization version   GIF version

Theorem 2lgslem3b1 26454
Description: Lemma 2 for 2lgslem3 26457. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3b1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)

Proof of Theorem 2lgslem3b1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12170 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 11998 . . . . 5 8 ∈ ℕ
3 nnrp 12670 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13563 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3)))
61, 4, 5sylancl 585 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3)))
7 simpr 484 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 12173 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 12000 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 10927 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7270 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 3) = ((8 · 𝑘) + 3))
1413eqeq2d 2749 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) ↔ 𝑃 = ((8 · 𝑘) + 3)))
1514biimpa 476 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑃 = ((8 · 𝑘) + 3))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3b 26450 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 3)) → 𝑁 = ((2 · 𝑘) + 1))
187, 15, 17syl2an2r 681 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑁 = ((2 · 𝑘) + 1))
19 oveq1 7262 . . . . . 6 (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2))
20 nn0z 12273 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
21 eqidd 2739 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1))
22 2tp1odd 15989 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1))
2320, 21, 22syl2anc 583 . . . . . . 7 (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1))
24 2z 12282 . . . . . . . . . . 11 2 ∈ ℤ
2524a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℤ)
2625, 20zmulcld 12361 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ)
2726peano2zd 12358 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ)
28 mod2eq1n2dvds 15984 . . . . . . . 8 (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
2927, 28syl 17 . . . . . . 7 (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
3023, 29mpbird 256 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1)
3119, 30sylan9eqr 2801 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1)
327, 18, 31syl2an2r 681 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → (𝑁 mod 2) = 1)
3332rexlimdva2 3215 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1))
346, 33syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → (𝑁 mod 2) = 1))
3534imp 406 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  8c8 11964  0cn0 12163  cz 12249  +crp 12659  cfl 13438   mod cmo 13517  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fl 13440  df-mod 13518  df-dvds 15892
This theorem is referenced by:  2lgslem3  26457
  Copyright terms: Public domain W3C validator