![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem3b1 | Structured version Visualization version GIF version |
Description: Lemma 2 for 2lgslem3 26834. (Contributed by AV, 16-Jul-2021.) |
Ref | Expression |
---|---|
2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
Ref | Expression |
---|---|
2lgslem3b1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12461 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
2 | 8nn 12289 | . . . . 5 ⊢ 8 ∈ ℕ | |
3 | nnrp 12967 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 8 ∈ ℝ+ |
5 | modmuladdnn0 13862 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3))) | |
6 | 1, 4, 5 | sylancl 586 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3))) |
7 | simpr 485 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
8 | nn0cn 12464 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
9 | 8cn 12291 | . . . . . . . . . . . 12 ⊢ 8 ∈ ℂ | |
10 | 9 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
11 | 8, 10 | mulcomd 11217 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
12 | 11 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
13 | 12 | oveq1d 7408 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 3) = ((8 · 𝑘) + 3)) |
14 | 13 | eqeq2d 2742 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) ↔ 𝑃 = ((8 · 𝑘) + 3))) |
15 | 14 | biimpa 477 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑃 = ((8 · 𝑘) + 3)) |
16 | 2lgslem2.n | . . . . . . 7 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
17 | 16 | 2lgslem3b 26827 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 3)) → 𝑁 = ((2 · 𝑘) + 1)) |
18 | 7, 15, 17 | syl2an2r 683 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑁 = ((2 · 𝑘) + 1)) |
19 | oveq1 7400 | . . . . . 6 ⊢ (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2)) | |
20 | nn0z 12565 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
21 | eqidd 2732 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) | |
22 | 2tp1odd 16277 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1)) | |
23 | 20, 21, 22 | syl2anc 584 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1)) |
24 | 2z 12576 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
25 | 24 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℤ) |
26 | 25, 20 | zmulcld 12654 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ) |
27 | 26 | peano2zd 12651 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ) |
28 | mod2eq1n2dvds 16272 | . . . . . . . 8 ⊢ (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) | |
29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) |
30 | 23, 29 | mpbird 256 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1) |
31 | 19, 30 | sylan9eqr 2793 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1) |
32 | 7, 18, 31 | syl2an2r 683 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → (𝑁 mod 2) = 1) |
33 | 32 | rexlimdva2 3156 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1)) |
34 | 6, 33 | syld 47 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → (𝑁 mod 2) = 1)) |
35 | 34 | imp 407 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3069 class class class wbr 5141 ‘cfv 6532 (class class class)co 7393 ℂcc 11090 1c1 11093 + caddc 11095 · cmul 11097 − cmin 11426 / cdiv 11853 ℕcn 12194 2c2 12249 3c3 12250 4c4 12251 8c8 12255 ℕ0cn0 12454 ℤcz 12540 ℝ+crp 12956 ⌊cfl 13737 mod cmo 13816 ∥ cdvds 16179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9419 df-inf 9420 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-n0 12455 df-z 12541 df-uz 12805 df-rp 12957 df-ico 13312 df-fl 13739 df-mod 13817 df-dvds 16180 |
This theorem is referenced by: 2lgslem3 26834 |
Copyright terms: Public domain | W3C validator |