MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3b1 Structured version   Visualization version   GIF version

Theorem 2lgslem3b1 26549
Description: Lemma 2 for 2lgslem3 26552. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3b1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)

Proof of Theorem 2lgslem3b1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12240 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 12068 . . . . 5 8 ∈ ℕ
3 nnrp 12741 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13635 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3)))
61, 4, 5sylancl 586 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3)))
7 simpr 485 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 12243 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 12070 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 10996 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 482 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7290 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 3) = ((8 · 𝑘) + 3))
1413eqeq2d 2749 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) ↔ 𝑃 = ((8 · 𝑘) + 3)))
1514biimpa 477 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑃 = ((8 · 𝑘) + 3))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3b 26545 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 3)) → 𝑁 = ((2 · 𝑘) + 1))
187, 15, 17syl2an2r 682 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑁 = ((2 · 𝑘) + 1))
19 oveq1 7282 . . . . . 6 (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2))
20 nn0z 12343 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
21 eqidd 2739 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1))
22 2tp1odd 16061 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1))
2320, 21, 22syl2anc 584 . . . . . . 7 (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1))
24 2z 12352 . . . . . . . . . . 11 2 ∈ ℤ
2524a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℤ)
2625, 20zmulcld 12432 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ)
2726peano2zd 12429 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ)
28 mod2eq1n2dvds 16056 . . . . . . . 8 (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
2927, 28syl 17 . . . . . . 7 (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
3023, 29mpbird 256 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1)
3119, 30sylan9eqr 2800 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1)
327, 18, 31syl2an2r 682 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → (𝑁 mod 2) = 1)
3332rexlimdva2 3216 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1))
346, 33syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → (𝑁 mod 2) = 1))
3534imp 407 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  8c8 12034  0cn0 12233  cz 12319  +crp 12730  cfl 13510   mod cmo 13589  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fl 13512  df-mod 13590  df-dvds 15964
This theorem is referenced by:  2lgslem3  26552
  Copyright terms: Public domain W3C validator