![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem3b1 | Structured version Visualization version GIF version |
Description: Lemma 2 for 2lgslem3 25697. (Contributed by AV, 16-Jul-2021.) |
Ref | Expression |
---|---|
2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
Ref | Expression |
---|---|
2lgslem3b1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 11713 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
2 | 8nn 11538 | . . . . 5 ⊢ 8 ∈ ℕ | |
3 | nnrp 12215 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 8 ∈ ℝ+ |
5 | modmuladdnn0 13096 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3))) | |
6 | 1, 4, 5 | sylancl 578 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3))) |
7 | simpr 477 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
8 | nn0cn 11716 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
9 | 8cn 11540 | . . . . . . . . . . . 12 ⊢ 8 ∈ ℂ | |
10 | 9 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
11 | 8, 10 | mulcomd 10459 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
12 | 11 | adantl 474 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
13 | 12 | oveq1d 6989 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 3) = ((8 · 𝑘) + 3)) |
14 | 13 | eqeq2d 2781 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) ↔ 𝑃 = ((8 · 𝑘) + 3))) |
15 | 14 | biimpa 469 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑃 = ((8 · 𝑘) + 3)) |
16 | 2lgslem2.n | . . . . . . 7 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
17 | 16 | 2lgslem3b 25690 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 3)) → 𝑁 = ((2 · 𝑘) + 1)) |
18 | 7, 15, 17 | syl2an2r 673 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑁 = ((2 · 𝑘) + 1)) |
19 | oveq1 6981 | . . . . . 6 ⊢ (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2)) | |
20 | nn0z 11816 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
21 | eqidd 2772 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) | |
22 | 2tp1odd 15559 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1)) | |
23 | 20, 21, 22 | syl2anc 576 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1)) |
24 | 2z 11825 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
25 | 24 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℤ) |
26 | 25, 20 | zmulcld 11904 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ) |
27 | 26 | peano2zd 11901 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ) |
28 | mod2eq1n2dvds 15554 | . . . . . . . 8 ⊢ (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) | |
29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1))) |
30 | 23, 29 | mpbird 249 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1) |
31 | 19, 30 | sylan9eqr 2829 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1) |
32 | 7, 18, 31 | syl2an2r 673 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → (𝑁 mod 2) = 1) |
33 | 32 | rexlimdva2 3225 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1)) |
34 | 6, 33 | syld 47 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → (𝑁 mod 2) = 1)) |
35 | 34 | imp 398 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∃wrex 3082 class class class wbr 4925 ‘cfv 6185 (class class class)co 6974 ℂcc 10331 1c1 10334 + caddc 10336 · cmul 10338 − cmin 10668 / cdiv 11096 ℕcn 11437 2c2 11493 3c3 11494 4c4 11495 8c8 11499 ℕ0cn0 11705 ℤcz 11791 ℝ+crp 12202 ⌊cfl 12973 mod cmo 13050 ∥ cdvds 15465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-inf 8700 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-ico 12558 df-fl 12975 df-mod 13051 df-dvds 15466 |
This theorem is referenced by: 2lgslem3 25697 |
Copyright terms: Public domain | W3C validator |