| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6mapd | Structured version Visualization version GIF version | ||
| Description: Axiom of choice equivalent, deduction form. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| ac6mapd.1 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜓 ↔ 𝜒)) |
| ac6mapd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ac6mapd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ac6mapd.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| ac6mapd | ⊢ (𝜑 → ∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6mapd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ac6mapd.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 2 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| 4 | ac6mapd.1 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ac6sg 10390 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 6 | 1, 3, 5 | sylc 65 | . . 3 ⊢ (𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| 7 | ac6mapd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | 7, 1 | elmapd 8773 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) |
| 9 | 8 | biimprd 248 | . . . . 5 ⊢ (𝜑 → (𝑓:𝐴⟶𝐵 → 𝑓 ∈ (𝐵 ↑m 𝐴))) |
| 10 | 9 | anim1d 611 | . . . 4 ⊢ (𝜑 → ((𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒) → (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 11 | 10 | eximdv 1918 | . . 3 ⊢ (𝜑 → (∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒) → ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 12 | 6, 11 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| 13 | df-rex 3058 | . 2 ⊢ (∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-reg 9489 ax-inf2 9542 ax-ac2 10365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-map 8761 df-en 8880 df-r1 9668 df-rank 9669 df-card 9843 df-ac 10018 |
| This theorem is referenced by: elrgspnsubrunlem2 33258 fldextrspunlsplem 33758 |
| Copyright terms: Public domain | W3C validator |