Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6mapd Structured version   Visualization version   GIF version

Theorem ac6mapd 32567
Description: Axiom of choice equivalent, deduction form. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
ac6mapd.1 (𝑦 = (𝑓𝑥) → (𝜓𝜒))
ac6mapd.2 (𝜑𝐴𝑉)
ac6mapd.3 (𝜑𝐵𝑊)
ac6mapd.4 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝜓)
Assertion
Ref Expression
ac6mapd (𝜑 → ∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒)
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥,𝑦   𝜒,𝑦   𝜑,𝑓,𝑥   𝜓,𝑓
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)   𝑊(𝑥,𝑦,𝑓)

Proof of Theorem ac6mapd
StepHypRef Expression
1 ac6mapd.2 . . . 4 (𝜑𝐴𝑉)
2 ac6mapd.4 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝜓)
32ralrimiva 3121 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
4 ac6mapd.1 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜓𝜒))
54ac6sg 10382 . . . 4 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒)))
61, 3, 5sylc 65 . . 3 (𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒))
7 ac6mapd.3 . . . . . . 7 (𝜑𝐵𝑊)
87, 1elmapd 8767 . . . . . 6 (𝜑 → (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵))
98biimprd 248 . . . . 5 (𝜑 → (𝑓:𝐴𝐵𝑓 ∈ (𝐵m 𝐴)))
109anim1d 611 . . . 4 (𝜑 → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒) → (𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒)))
1110eximdv 1917 . . 3 (𝜑 → (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒) → ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒)))
126, 11mpd 15 . 2 (𝜑 → ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒))
13 df-rex 3054 . 2 (∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒 ↔ ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒))
1412, 13sylibr 234 1 (𝜑 → ∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-map 8755  df-en 8873  df-r1 9660  df-rank 9661  df-card 9835  df-ac 10010
This theorem is referenced by:  elrgspnsubrunlem2  33188  fldextrspunlsplem  33640
  Copyright terms: Public domain W3C validator