Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6mapd Structured version   Visualization version   GIF version

Theorem ac6mapd 32555
Description: Axiom of choice equivalent, deduction form. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
ac6mapd.1 (𝑦 = (𝑓𝑥) → (𝜓𝜒))
ac6mapd.2 (𝜑𝐴𝑉)
ac6mapd.3 (𝜑𝐵𝑊)
ac6mapd.4 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝜓)
Assertion
Ref Expression
ac6mapd (𝜑 → ∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒)
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥,𝑦   𝜒,𝑦   𝜑,𝑓,𝑥   𝜓,𝑓
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)   𝑊(𝑥,𝑦,𝑓)

Proof of Theorem ac6mapd
StepHypRef Expression
1 ac6mapd.2 . . . 4 (𝜑𝐴𝑉)
2 ac6mapd.4 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝜓)
32ralrimiva 3126 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
4 ac6mapd.1 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜓𝜒))
54ac6sg 10447 . . . 4 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒)))
61, 3, 5sylc 65 . . 3 (𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒))
7 ac6mapd.3 . . . . . . 7 (𝜑𝐵𝑊)
87, 1elmapd 8815 . . . . . 6 (𝜑 → (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵))
98biimprd 248 . . . . 5 (𝜑 → (𝑓:𝐴𝐵𝑓 ∈ (𝐵m 𝐴)))
109anim1d 611 . . . 4 (𝜑 → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒) → (𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒)))
1110eximdv 1917 . . 3 (𝜑 → (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒) → ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒)))
126, 11mpd 15 . 2 (𝜑 → ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒))
13 df-rex 3055 . 2 (∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒 ↔ ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒))
1412, 13sylibr 234 1 (𝜑 → ∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  wf 6509  cfv 6513  (class class class)co 7389  m cmap 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-inf2 9600  ax-ac2 10422
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-map 8803  df-en 8921  df-r1 9723  df-rank 9724  df-card 9898  df-ac 10075
This theorem is referenced by:  elrgspnsubrunlem2  33205  fldextrspunlsplem  33674
  Copyright terms: Public domain W3C validator