| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6mapd | Structured version Visualization version GIF version | ||
| Description: Axiom of choice equivalent, deduction form. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| ac6mapd.1 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜓 ↔ 𝜒)) |
| ac6mapd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ac6mapd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ac6mapd.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| ac6mapd | ⊢ (𝜑 → ∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6mapd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ac6mapd.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 2 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| 4 | ac6mapd.1 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ac6sg 10524 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 6 | 1, 3, 5 | sylc 65 | . . 3 ⊢ (𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| 7 | ac6mapd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | 7, 1 | elmapd 8876 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) |
| 9 | 8 | biimprd 248 | . . . . 5 ⊢ (𝜑 → (𝑓:𝐴⟶𝐵 → 𝑓 ∈ (𝐵 ↑m 𝐴))) |
| 10 | 9 | anim1d 611 | . . . 4 ⊢ (𝜑 → ((𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒) → (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 11 | 10 | eximdv 1917 | . . 3 ⊢ (𝜑 → (∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒) → ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 12 | 6, 11 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| 13 | df-rex 3070 | . 2 ⊢ (∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3060 ∃wrex 3069 ⟶wf 6555 ‘cfv 6559 (class class class)co 7429 ↑m cmap 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-reg 9628 ax-inf2 9677 ax-ac2 10499 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-isom 6568 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-map 8864 df-en 8982 df-r1 9800 df-rank 9801 df-card 9975 df-ac 10152 |
| This theorem is referenced by: elrgspnsubrunlem2 33240 fldextrspunlsplem 33708 |
| Copyright terms: Public domain | W3C validator |