| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6mapd | Structured version Visualization version GIF version | ||
| Description: Axiom of choice equivalent, deduction form. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| ac6mapd.1 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜓 ↔ 𝜒)) |
| ac6mapd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ac6mapd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ac6mapd.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| ac6mapd | ⊢ (𝜑 → ∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6mapd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ac6mapd.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 2 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| 4 | ac6mapd.1 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ac6sg 10510 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 6 | 1, 3, 5 | sylc 65 | . . 3 ⊢ (𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| 7 | ac6mapd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | 7, 1 | elmapd 8862 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) |
| 9 | 8 | biimprd 248 | . . . . 5 ⊢ (𝜑 → (𝑓:𝐴⟶𝐵 → 𝑓 ∈ (𝐵 ↑m 𝐴))) |
| 10 | 9 | anim1d 611 | . . . 4 ⊢ (𝜑 → ((𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒) → (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 11 | 10 | eximdv 1916 | . . 3 ⊢ (𝜑 → (∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜒) → ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒))) |
| 12 | 6, 11 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| 13 | df-rex 3060 | . 2 ⊢ (∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑓(𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑓 ∈ (𝐵 ↑m 𝐴)∀𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-reg 9614 ax-inf2 9663 ax-ac2 10485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-map 8850 df-en 8968 df-r1 9786 df-rank 9787 df-card 9961 df-ac 10138 |
| This theorem is referenced by: elrgspnsubrunlem2 33196 fldextrspunlsplem 33665 |
| Copyright terms: Public domain | W3C validator |