Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6mapd Structured version   Visualization version   GIF version

Theorem ac6mapd 32598
Description: Axiom of choice equivalent, deduction form. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
ac6mapd.1 (𝑦 = (𝑓𝑥) → (𝜓𝜒))
ac6mapd.2 (𝜑𝐴𝑉)
ac6mapd.3 (𝜑𝐵𝑊)
ac6mapd.4 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝜓)
Assertion
Ref Expression
ac6mapd (𝜑 → ∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒)
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥,𝑦   𝜒,𝑦   𝜑,𝑓,𝑥   𝜓,𝑓
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)   𝑊(𝑥,𝑦,𝑓)

Proof of Theorem ac6mapd
StepHypRef Expression
1 ac6mapd.2 . . . 4 (𝜑𝐴𝑉)
2 ac6mapd.4 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝜓)
32ralrimiva 3124 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
4 ac6mapd.1 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜓𝜒))
54ac6sg 10374 . . . 4 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒)))
61, 3, 5sylc 65 . . 3 (𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒))
7 ac6mapd.3 . . . . . . 7 (𝜑𝐵𝑊)
87, 1elmapd 8759 . . . . . 6 (𝜑 → (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵))
98biimprd 248 . . . . 5 (𝜑 → (𝑓:𝐴𝐵𝑓 ∈ (𝐵m 𝐴)))
109anim1d 611 . . . 4 (𝜑 → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒) → (𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒)))
1110eximdv 1918 . . 3 (𝜑 → (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜒) → ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒)))
126, 11mpd 15 . 2 (𝜑 → ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒))
13 df-rex 3057 . 2 (∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒 ↔ ∃𝑓(𝑓 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴 𝜒))
1412, 13sylibr 234 1 (𝜑 → ∃𝑓 ∈ (𝐵m 𝐴)∀𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  wf 6472  cfv 6476  (class class class)co 7341  m cmap 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10349
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-map 8747  df-en 8865  df-r1 9652  df-rank 9653  df-card 9827  df-ac 10002
This theorem is referenced by:  elrgspnsubrunlem2  33207  fldextrspunlsplem  33678
  Copyright terms: Public domain W3C validator