| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > add20 | Structured version Visualization version GIF version | ||
| Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| add20 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 775 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ≤ 𝐴) | |
| 2 | simplrl 776 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ∈ ℝ) | |
| 3 | simplll 774 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 ∈ ℝ) | |
| 4 | addge02 11696 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ 𝐵 ≤ (𝐴 + 𝐵))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (0 ≤ 𝐴 ↔ 𝐵 ≤ (𝐴 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ≤ (𝐴 + 𝐵)) |
| 7 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = 0) | |
| 8 | 6, 7 | breqtrd 5136 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ≤ 0) |
| 9 | simplrr 777 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ≤ 𝐵) | |
| 10 | 0red 11184 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ∈ ℝ) | |
| 11 | 2, 10 | letri3d 11323 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐵 = 0 ↔ (𝐵 ≤ 0 ∧ 0 ≤ 𝐵))) |
| 12 | 8, 9, 11 | mpbir2and 713 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 = 0) |
| 13 | 12 | oveq2d 7406 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = (𝐴 + 0)) |
| 14 | 3 | recnd 11209 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 ∈ ℂ) |
| 15 | 14 | addridd 11381 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 0) = 𝐴) |
| 16 | 13, 7, 15 | 3eqtr3rd 2774 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 = 0) |
| 17 | 16, 12 | jca 511 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 = 0 ∧ 𝐵 = 0)) |
| 18 | 17 | ex 412 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))) |
| 19 | oveq12 7399 | . . 3 ⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = (0 + 0)) | |
| 20 | 00id 11356 | . . 3 ⊢ (0 + 0) = 0 | |
| 21 | 19, 20 | eqtrdi 2781 | . 2 ⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = 0) |
| 22 | 18, 21 | impbid1 225 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 + caddc 11078 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: add20i 11728 xnn0xadd0 13214 sumsqeq0 14151 ccat0 14548 4sqlem15 16937 4sqlem16 16938 ang180lem2 26727 mumullem2 27097 2sqlem7 27342 ply1unit 33551 poimirlem23 37644 |
| Copyright terms: Public domain | W3C validator |