MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  add20 Structured version   Visualization version   GIF version

Theorem add20 11690
Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
add20 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))

Proof of Theorem add20
StepHypRef Expression
1 simpllr 775 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ≤ 𝐴)
2 simplrl 776 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ∈ ℝ)
3 simplll 774 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 ∈ ℝ)
4 addge02 11689 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
52, 3, 4syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
61, 5mpbid 232 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ≤ (𝐴 + 𝐵))
7 simpr 484 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = 0)
86, 7breqtrd 5133 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ≤ 0)
9 simplrr 777 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ≤ 𝐵)
10 0red 11177 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ∈ ℝ)
112, 10letri3d 11316 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐵 = 0 ↔ (𝐵 ≤ 0 ∧ 0 ≤ 𝐵)))
128, 9, 11mpbir2and 713 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 = 0)
1312oveq2d 7403 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = (𝐴 + 0))
143recnd 11202 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 ∈ ℂ)
1514addridd 11374 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 0) = 𝐴)
1613, 7, 153eqtr3rd 2773 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 = 0)
1716, 12jca 511 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 = 0 ∧ 𝐵 = 0))
1817ex 412 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
19 oveq12 7396 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = (0 + 0))
20 00id 11349 . . 3 (0 + 0) = 0
2119, 20eqtrdi 2780 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = 0)
2218, 21impbid1 225 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  add20i  11721  xnn0xadd0  13207  sumsqeq0  14144  ccat0  14541  4sqlem15  16930  4sqlem16  16931  ang180lem2  26720  mumullem2  27090  2sqlem7  27335  ply1unit  33544  poimirlem23  37637
  Copyright terms: Public domain W3C validator