![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumsqeq0 | Structured version Visualization version GIF version |
Description: The sum of two squres of reals is zero if and only if both reals are zero. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
sumsqeq0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcl 14091 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
2 | sqge0 14103 | . . . 4 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
3 | 1, 2 | jca 512 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2))) |
4 | resqcl 14091 | . . . 4 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ) | |
5 | sqge0 14103 | . . . 4 ⊢ (𝐵 ∈ ℝ → 0 ≤ (𝐵↑2)) | |
6 | 4, 5 | jca 512 | . . 3 ⊢ (𝐵 ∈ ℝ → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))) |
7 | add20 11728 | . . 3 ⊢ ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))) → (((𝐴↑2) + (𝐵↑2)) = 0 ↔ ((𝐴↑2) = 0 ∧ (𝐵↑2) = 0))) | |
8 | 3, 6, 7 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) = 0 ↔ ((𝐴↑2) = 0 ∧ (𝐵↑2) = 0))) |
9 | recn 11202 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
10 | sqeq0 14087 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) |
12 | recn 11202 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
13 | sqeq0 14087 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝐵 ∈ ℝ → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) |
15 | 11, 14 | bi2anan9 637 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴↑2) = 0 ∧ (𝐵↑2) = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
16 | 8, 15 | bitr2d 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7411 ℂcc 11110 ℝcr 11111 0cc0 11112 + caddc 11115 ≤ cle 11251 2c2 12269 ↑cexp 14029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-n0 12475 df-z 12561 df-uz 12825 df-seq 13969 df-exp 14030 |
This theorem is referenced by: crreczi 14193 diophin 41592 |
Copyright terms: Public domain | W3C validator |