Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsqeq0 Structured version   Visualization version   GIF version

Theorem sumsqeq0 13148
 Description: Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
sumsqeq0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))

Proof of Theorem sumsqeq0
StepHypRef Expression
1 resqcl 13137 . . . 4 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
2 sqge0 13146 . . . 4 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
31, 2jca 495 . . 3 (𝐴 ∈ ℝ → ((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)))
4 resqcl 13137 . . . 4 (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ)
5 sqge0 13146 . . . 4 (𝐵 ∈ ℝ → 0 ≤ (𝐵↑2))
64, 5jca 495 . . 3 (𝐵 ∈ ℝ → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)))
7 add20 10741 . . 3 ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))) → (((𝐴↑2) + (𝐵↑2)) = 0 ↔ ((𝐴↑2) = 0 ∧ (𝐵↑2) = 0)))
83, 6, 7syl2an 575 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) = 0 ↔ ((𝐴↑2) = 0 ∧ (𝐵↑2) = 0)))
9 recn 10227 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 sqeq0 13133 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
119, 10syl 17 . . 3 (𝐴 ∈ ℝ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
12 recn 10227 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
13 sqeq0 13133 . . . 4 (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
1412, 13syl 17 . . 3 (𝐵 ∈ ℝ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
1511, 14bi2anan9 612 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴↑2) = 0 ∧ (𝐵↑2) = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
168, 15bitr2d 269 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144   class class class wbr 4784  (class class class)co 6792  ℂcc 10135  ℝcr 10136  0cc0 10137   + caddc 10140   ≤ cle 10276  2c2 11271  ↑cexp 13066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-seq 13008  df-exp 13067 This theorem is referenced by:  crreczi  13195  diophin  37855
 Copyright terms: Public domain W3C validator