MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsqeq0 Structured version   Visualization version   GIF version

Theorem sumsqeq0 13969
Description: Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
sumsqeq0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))

Proof of Theorem sumsqeq0
StepHypRef Expression
1 resqcl 13917 . . . 4 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
2 sqge0 13928 . . . 4 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
31, 2jca 512 . . 3 (𝐴 ∈ ℝ → ((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)))
4 resqcl 13917 . . . 4 (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ)
5 sqge0 13928 . . . 4 (𝐵 ∈ ℝ → 0 ≤ (𝐵↑2))
64, 5jca 512 . . 3 (𝐵 ∈ ℝ → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)))
7 add20 11560 . . 3 ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))) → (((𝐴↑2) + (𝐵↑2)) = 0 ↔ ((𝐴↑2) = 0 ∧ (𝐵↑2) = 0)))
83, 6, 7syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) = 0 ↔ ((𝐴↑2) = 0 ∧ (𝐵↑2) = 0)))
9 recn 11034 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 sqeq0 13913 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
119, 10syl 17 . . 3 (𝐴 ∈ ℝ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
12 recn 11034 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
13 sqeq0 13913 . . . 4 (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
1412, 13syl 17 . . 3 (𝐵 ∈ ℝ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
1511, 14bi2anan9 636 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴↑2) = 0 ∧ (𝐵↑2) = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
168, 15bitr2d 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105   class class class wbr 5087  (class class class)co 7315  cc 10942  cr 10943  0cc0 10944   + caddc 10947  cle 11083  2c2 12101  cexp 13855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-2 12109  df-n0 12307  df-z 12393  df-uz 12656  df-seq 13795  df-exp 13856
This theorem is referenced by:  crreczi  14016  diophin  40797
  Copyright terms: Public domain W3C validator