MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsqeq0 Structured version   Visualization version   GIF version

Theorem sumsqeq0 13938
Description: Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
sumsqeq0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))

Proof of Theorem sumsqeq0
StepHypRef Expression
1 resqcl 13886 . . . 4 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
2 sqge0 13897 . . . 4 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
31, 2jca 513 . . 3 (𝐴 ∈ ℝ → ((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)))
4 resqcl 13886 . . . 4 (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ)
5 sqge0 13897 . . . 4 (𝐵 ∈ ℝ → 0 ≤ (𝐵↑2))
64, 5jca 513 . . 3 (𝐵 ∈ ℝ → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)))
7 add20 11529 . . 3 ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))) → (((𝐴↑2) + (𝐵↑2)) = 0 ↔ ((𝐴↑2) = 0 ∧ (𝐵↑2) = 0)))
83, 6, 7syl2an 597 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) = 0 ↔ ((𝐴↑2) = 0 ∧ (𝐵↑2) = 0)))
9 recn 11003 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 sqeq0 13882 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
119, 10syl 17 . . 3 (𝐴 ∈ ℝ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
12 recn 11003 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
13 sqeq0 13882 . . . 4 (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
1412, 13syl 17 . . 3 (𝐵 ∈ ℝ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
1511, 14bi2anan9 637 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴↑2) = 0 ∧ (𝐵↑2) = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
168, 15bitr2d 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  (class class class)co 7303  cc 10911  cr 10912  0cc0 10913   + caddc 10916  cle 11052  2c2 12070  cexp 13824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616  ax-cnex 10969  ax-resscn 10970  ax-1cn 10971  ax-icn 10972  ax-addcl 10973  ax-addrcl 10974  ax-mulcl 10975  ax-mulrcl 10976  ax-mulcom 10977  ax-addass 10978  ax-mulass 10979  ax-distr 10980  ax-i2m1 10981  ax-1ne0 10982  ax-1rid 10983  ax-rnegex 10984  ax-rrecex 10985  ax-cnre 10986  ax-pre-lttri 10987  ax-pre-lttrn 10988  ax-pre-ltadd 10989  ax-pre-mulgt0 10990
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5496  df-eprel 5502  df-po 5510  df-so 5511  df-fr 5551  df-we 5553  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-pred 6213  df-ord 6280  df-on 6281  df-lim 6282  df-suc 6283  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-riota 7260  df-ov 7306  df-oprab 7307  df-mpo 7308  df-om 7741  df-2nd 7860  df-frecs 8124  df-wrecs 8155  df-recs 8229  df-rdg 8268  df-er 8525  df-en 8761  df-dom 8762  df-sdom 8763  df-pnf 11053  df-mnf 11054  df-xr 11055  df-ltxr 11056  df-le 11057  df-sub 11249  df-neg 11250  df-nn 12016  df-2 12078  df-n0 12276  df-z 12362  df-uz 12625  df-seq 13764  df-exp 13825
This theorem is referenced by:  crreczi  13985  diophin  40630
  Copyright terms: Public domain W3C validator