MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat0 Structured version   Visualization version   GIF version

Theorem ccat0 14517
Description: The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
Assertion
Ref Expression
ccat0 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))

Proof of Theorem ccat0
StepHypRef Expression
1 ccatlen 14516 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
21eqeq1d 2731 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ ((♯‘𝑆) + (♯‘𝑇)) = 0))
3 ovex 7402 . . . 4 (𝑆 ++ 𝑇) ∈ V
4 hasheq0 14304 . . . 4 ((𝑆 ++ 𝑇) ∈ V → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ (𝑆 ++ 𝑇) = ∅))
53, 4mp1i 13 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ (𝑆 ++ 𝑇) = ∅))
6 lencl 14474 . . . . 5 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
7 nn0re 12427 . . . . . 6 ((♯‘𝑆) ∈ ℕ0 → (♯‘𝑆) ∈ ℝ)
8 nn0ge0 12443 . . . . . 6 ((♯‘𝑆) ∈ ℕ0 → 0 ≤ (♯‘𝑆))
97, 8jca 511 . . . . 5 ((♯‘𝑆) ∈ ℕ0 → ((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)))
106, 9syl 17 . . . 4 (𝑆 ∈ Word 𝐴 → ((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)))
11 lencl 14474 . . . . 5 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 nn0re 12427 . . . . . 6 ((♯‘𝑇) ∈ ℕ0 → (♯‘𝑇) ∈ ℝ)
13 nn0ge0 12443 . . . . . 6 ((♯‘𝑇) ∈ ℕ0 → 0 ≤ (♯‘𝑇))
1412, 13jca 511 . . . . 5 ((♯‘𝑇) ∈ ℕ0 → ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇)))
1511, 14syl 17 . . . 4 (𝑇 ∈ Word 𝐵 → ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇)))
16 add20 11666 . . . 4 ((((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)) ∧ ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇))) → (((♯‘𝑆) + (♯‘𝑇)) = 0 ↔ ((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0)))
1710, 15, 16syl2an 596 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) = 0 ↔ ((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0)))
182, 5, 173bitr3d 309 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ ((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0)))
19 hasheq0 14304 . . 3 (𝑆 ∈ Word 𝐴 → ((♯‘𝑆) = 0 ↔ 𝑆 = ∅))
20 hasheq0 14304 . . 3 (𝑇 ∈ Word 𝐵 → ((♯‘𝑇) = 0 ↔ 𝑇 = ∅))
2119, 20bi2anan9 638 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0) ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))
2218, 21bitrd 279 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044   + caddc 11047  cle 11185  0cn0 12418  chash 14271  Word cword 14454   ++ cconcat 14511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512
This theorem is referenced by:  clwwlkccat  29892  clwwlkwwlksb  29956
  Copyright terms: Public domain W3C validator