MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat0 Structured version   Visualization version   GIF version

Theorem ccat0 13929
Description: The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
Assertion
Ref Expression
ccat0 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))

Proof of Theorem ccat0
StepHypRef Expression
1 ccatlen 13927 . . . 4 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
21eqeq1d 2823 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ ((♯‘𝑆) + (♯‘𝑇)) = 0))
3 ovex 7189 . . . 4 (𝑆 ++ 𝑇) ∈ V
4 hasheq0 13725 . . . 4 ((𝑆 ++ 𝑇) ∈ V → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ (𝑆 ++ 𝑇) = ∅))
53, 4mp1i 13 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇)) = 0 ↔ (𝑆 ++ 𝑇) = ∅))
6 lencl 13883 . . . . 5 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
7 nn0re 11907 . . . . . 6 ((♯‘𝑆) ∈ ℕ0 → (♯‘𝑆) ∈ ℝ)
8 nn0ge0 11923 . . . . . 6 ((♯‘𝑆) ∈ ℕ0 → 0 ≤ (♯‘𝑆))
97, 8jca 514 . . . . 5 ((♯‘𝑆) ∈ ℕ0 → ((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)))
106, 9syl 17 . . . 4 (𝑆 ∈ Word 𝐴 → ((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)))
11 lencl 13883 . . . . 5 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 nn0re 11907 . . . . . 6 ((♯‘𝑇) ∈ ℕ0 → (♯‘𝑇) ∈ ℝ)
13 nn0ge0 11923 . . . . . 6 ((♯‘𝑇) ∈ ℕ0 → 0 ≤ (♯‘𝑇))
1412, 13jca 514 . . . . 5 ((♯‘𝑇) ∈ ℕ0 → ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇)))
1511, 14syl 17 . . . 4 (𝑇 ∈ Word 𝐵 → ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇)))
16 add20 11152 . . . 4 ((((♯‘𝑆) ∈ ℝ ∧ 0 ≤ (♯‘𝑆)) ∧ ((♯‘𝑇) ∈ ℝ ∧ 0 ≤ (♯‘𝑇))) → (((♯‘𝑆) + (♯‘𝑇)) = 0 ↔ ((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0)))
1710, 15, 16syl2an 597 . . 3 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) = 0 ↔ ((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0)))
182, 5, 173bitr3d 311 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ ((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0)))
19 hasheq0 13725 . . 3 (𝑆 ∈ Word 𝐴 → ((♯‘𝑆) = 0 ↔ 𝑆 = ∅))
20 hasheq0 13725 . . 3 (𝑇 ∈ Word 𝐵 → ((♯‘𝑇) = 0 ↔ 𝑇 = ∅))
2119, 20bi2anan9 637 . 2 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (((♯‘𝑆) = 0 ∧ (♯‘𝑇) = 0) ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))
2218, 21bitrd 281 1 ((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  c0 4291   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   + caddc 10540  cle 10676  0cn0 11898  chash 13691  Word cword 13862   ++ cconcat 13922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923
This theorem is referenced by:  clwwlkccat  27768  clwwlkwwlksb  27833
  Copyright terms: Public domain W3C validator