MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem16 Structured version   Visualization version   GIF version

Theorem 4sqlem16 16286
Description: Lemma for 4sq 16290. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem16 (𝜑 → (𝑅𝑀 ∧ ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃))))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝐻   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑛,𝐹   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛   𝑅,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem16
StepHypRef Expression
1 4sq.r . . 3 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
2 4sq.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3 4sq.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘2))
4 eluz2nn 12272 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
53, 4syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
6 4sq.e . . . . . . . . . . . 12 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
72, 5, 64sqlem5 16268 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
87simpld 498 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
9 zsqcl 13490 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℤ)
108, 9syl 17 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℤ)
1110zred 12075 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℝ)
12 4sq.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
13 4sq.f . . . . . . . . . . . 12 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1412, 5, 134sqlem5 16268 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
1514simpld 498 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
16 zsqcl 13490 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℤ)
1817zred 12075 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℝ)
1911, 18readdcld 10659 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
20 4sq.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℤ)
21 4sq.g . . . . . . . . . . . 12 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2220, 5, 214sqlem5 16268 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
2322simpld 498 . . . . . . . . . 10 (𝜑𝐺 ∈ ℤ)
24 zsqcl 13490 . . . . . . . . . 10 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℤ)
2523, 24syl 17 . . . . . . . . 9 (𝜑 → (𝐺↑2) ∈ ℤ)
2625zred 12075 . . . . . . . 8 (𝜑 → (𝐺↑2) ∈ ℝ)
27 4sq.d . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℤ)
28 4sq.h . . . . . . . . . . . 12 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2927, 5, 284sqlem5 16268 . . . . . . . . . . 11 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
3029simpld 498 . . . . . . . . . 10 (𝜑𝐻 ∈ ℤ)
31 zsqcl 13490 . . . . . . . . . 10 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℤ)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (𝐻↑2) ∈ ℤ)
3332zred 12075 . . . . . . . 8 (𝜑 → (𝐻↑2) ∈ ℝ)
3426, 33readdcld 10659 . . . . . . 7 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℝ)
355nnred 11640 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
3635resqcld 13607 . . . . . . . 8 (𝜑 → (𝑀↑2) ∈ ℝ)
3736rehalfcld 11872 . . . . . . 7 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
3837rehalfcld 11872 . . . . . . . . 9 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
392, 5, 64sqlem7 16270 . . . . . . . . 9 (𝜑 → (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2))
4012, 5, 134sqlem7 16270 . . . . . . . . 9 (𝜑 → (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2))
4111, 18, 38, 38, 39, 40le2addd 11248 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
4237recnd 10658 . . . . . . . . 9 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
43422halvesd 11871 . . . . . . . 8 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
4441, 43breqtrd 5056 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
4520, 5, 214sqlem7 16270 . . . . . . . . 9 (𝜑 → (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2))
4627, 5, 284sqlem7 16270 . . . . . . . . 9 (𝜑 → (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2))
4726, 33, 38, 38, 45, 46le2addd 11248 . . . . . . . 8 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
4847, 43breqtrd 5056 . . . . . . 7 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2))
4919, 34, 37, 37, 44, 48le2addd 11248 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (((𝑀↑2) / 2) + ((𝑀↑2) / 2)))
5036recnd 10658 . . . . . . 7 (𝜑 → (𝑀↑2) ∈ ℂ)
51502halvesd 11871 . . . . . 6 (𝜑 → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
5249, 51breqtrd 5056 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (𝑀↑2))
5335recnd 10658 . . . . . 6 (𝜑𝑀 ∈ ℂ)
5453sqvald 13503 . . . . 5 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
5552, 54breqtrd 5056 . . . 4 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (𝑀 · 𝑀))
5619, 34readdcld 10659 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
575nngt0d 11674 . . . . 5 (𝜑 → 0 < 𝑀)
58 ledivmul 11505 . . . . 5 (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ≤ 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (𝑀 · 𝑀)))
5956, 35, 35, 57, 58syl112anc 1371 . . . 4 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ≤ 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ≤ (𝑀 · 𝑀)))
6055, 59mpbird 260 . . 3 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ≤ 𝑀)
611, 60eqbrtrid 5065 . 2 (𝜑𝑅𝑀)
62 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑅 = 0) → 𝑅 = 0)
631, 62syl5eqr 2847 . . . . . . . . . . . 12 ((𝜑𝑅 = 0) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 0)
6456recnd 10658 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
655nnne0d 11675 . . . . . . . . . . . . . . 15 (𝜑𝑀 ≠ 0)
6664, 53, 65diveq0ad 11415 . . . . . . . . . . . . . 14 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 0 ↔ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = 0))
67 zsqcl2 13498 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
688, 67syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸↑2) ∈ ℕ0)
69 zsqcl2 13498 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
7015, 69syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹↑2) ∈ ℕ0)
7168, 70nn0addcld 11947 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
7271nn0ge0d 11946 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ ((𝐸↑2) + (𝐹↑2)))
73 zsqcl2 13498 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℕ0)
7423, 73syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺↑2) ∈ ℕ0)
75 zsqcl2 13498 . . . . . . . . . . . . . . . . . 18 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℕ0)
7630, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻↑2) ∈ ℕ0)
7774, 76nn0addcld 11947 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℕ0)
7877nn0ge0d 11946 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ ((𝐺↑2) + (𝐻↑2)))
79 add20 11141 . . . . . . . . . . . . . . 15 (((((𝐸↑2) + (𝐹↑2)) ∈ ℝ ∧ 0 ≤ ((𝐸↑2) + (𝐹↑2))) ∧ (((𝐺↑2) + (𝐻↑2)) ∈ ℝ ∧ 0 ≤ ((𝐺↑2) + (𝐻↑2)))) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = 0 ↔ (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0)))
8019, 72, 34, 78, 79syl22anc 837 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = 0 ↔ (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0)))
8166, 80bitrd 282 . . . . . . . . . . . . 13 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 0 ↔ (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0)))
8281biimpa 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 0) → (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0))
8363, 82syldan 594 . . . . . . . . . . 11 ((𝜑𝑅 = 0) → (((𝐸↑2) + (𝐹↑2)) = 0 ∧ ((𝐺↑2) + (𝐻↑2)) = 0))
8483simpld 498 . . . . . . . . . 10 ((𝜑𝑅 = 0) → ((𝐸↑2) + (𝐹↑2)) = 0)
8568nn0ge0d 11946 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐸↑2))
8670nn0ge0d 11946 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐹↑2))
87 add20 11141 . . . . . . . . . . . 12 ((((𝐸↑2) ∈ ℝ ∧ 0 ≤ (𝐸↑2)) ∧ ((𝐹↑2) ∈ ℝ ∧ 0 ≤ (𝐹↑2))) → (((𝐸↑2) + (𝐹↑2)) = 0 ↔ ((𝐸↑2) = 0 ∧ (𝐹↑2) = 0)))
8811, 85, 18, 86, 87syl22anc 837 . . . . . . . . . . 11 (𝜑 → (((𝐸↑2) + (𝐹↑2)) = 0 ↔ ((𝐸↑2) = 0 ∧ (𝐹↑2) = 0)))
8988biimpa 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐸↑2) + (𝐹↑2)) = 0) → ((𝐸↑2) = 0 ∧ (𝐹↑2) = 0))
9084, 89syldan 594 . . . . . . . . 9 ((𝜑𝑅 = 0) → ((𝐸↑2) = 0 ∧ (𝐹↑2) = 0))
9190simpld 498 . . . . . . . 8 ((𝜑𝑅 = 0) → (𝐸↑2) = 0)
922, 5, 6, 914sqlem9 16272 . . . . . . 7 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (𝐴↑2))
9390simprd 499 . . . . . . . 8 ((𝜑𝑅 = 0) → (𝐹↑2) = 0)
9412, 5, 13, 934sqlem9 16272 . . . . . . 7 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (𝐵↑2))
955nnsqcld 13601 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℕ)
9695nnzd 12074 . . . . . . . . 9 (𝜑 → (𝑀↑2) ∈ ℤ)
97 zsqcl 13490 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
982, 97syl 17 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℤ)
99 zsqcl 13490 . . . . . . . . . 10 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
10012, 99syl 17 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℤ)
101 dvds2add 15635 . . . . . . . . 9 (((𝑀↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → (((𝑀↑2) ∥ (𝐴↑2) ∧ (𝑀↑2) ∥ (𝐵↑2)) → (𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
10296, 98, 100, 101syl3anc 1368 . . . . . . . 8 (𝜑 → (((𝑀↑2) ∥ (𝐴↑2) ∧ (𝑀↑2) ∥ (𝐵↑2)) → (𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
103102adantr 484 . . . . . . 7 ((𝜑𝑅 = 0) → (((𝑀↑2) ∥ (𝐴↑2) ∧ (𝑀↑2) ∥ (𝐵↑2)) → (𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
10492, 94, 103mp2and 698 . . . . . 6 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
10583simprd 499 . . . . . . . . . 10 ((𝜑𝑅 = 0) → ((𝐺↑2) + (𝐻↑2)) = 0)
10674nn0ge0d 11946 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐺↑2))
10776nn0ge0d 11946 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐻↑2))
108 add20 11141 . . . . . . . . . . . 12 ((((𝐺↑2) ∈ ℝ ∧ 0 ≤ (𝐺↑2)) ∧ ((𝐻↑2) ∈ ℝ ∧ 0 ≤ (𝐻↑2))) → (((𝐺↑2) + (𝐻↑2)) = 0 ↔ ((𝐺↑2) = 0 ∧ (𝐻↑2) = 0)))
10926, 106, 33, 107, 108syl22anc 837 . . . . . . . . . . 11 (𝜑 → (((𝐺↑2) + (𝐻↑2)) = 0 ↔ ((𝐺↑2) = 0 ∧ (𝐻↑2) = 0)))
110109biimpa 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺↑2) + (𝐻↑2)) = 0) → ((𝐺↑2) = 0 ∧ (𝐻↑2) = 0))
111105, 110syldan 594 . . . . . . . . 9 ((𝜑𝑅 = 0) → ((𝐺↑2) = 0 ∧ (𝐻↑2) = 0))
112111simpld 498 . . . . . . . 8 ((𝜑𝑅 = 0) → (𝐺↑2) = 0)
11320, 5, 21, 1124sqlem9 16272 . . . . . . 7 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (𝐶↑2))
114111simprd 499 . . . . . . . 8 ((𝜑𝑅 = 0) → (𝐻↑2) = 0)
11527, 5, 28, 1144sqlem9 16272 . . . . . . 7 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (𝐷↑2))
116 zsqcl 13490 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
11720, 116syl 17 . . . . . . . . 9 (𝜑 → (𝐶↑2) ∈ ℤ)
118 zsqcl 13490 . . . . . . . . . 10 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
11927, 118syl 17 . . . . . . . . 9 (𝜑 → (𝐷↑2) ∈ ℤ)
120 dvds2add 15635 . . . . . . . . 9 (((𝑀↑2) ∈ ℤ ∧ (𝐶↑2) ∈ ℤ ∧ (𝐷↑2) ∈ ℤ) → (((𝑀↑2) ∥ (𝐶↑2) ∧ (𝑀↑2) ∥ (𝐷↑2)) → (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))))
12196, 117, 119, 120syl3anc 1368 . . . . . . . 8 (𝜑 → (((𝑀↑2) ∥ (𝐶↑2) ∧ (𝑀↑2) ∥ (𝐷↑2)) → (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))))
122121adantr 484 . . . . . . 7 ((𝜑𝑅 = 0) → (((𝑀↑2) ∥ (𝐶↑2) ∧ (𝑀↑2) ∥ (𝐷↑2)) → (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))))
123113, 115, 122mp2and 698 . . . . . 6 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2)))
12498, 100zaddcld 12079 . . . . . . . 8 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
125117, 119zaddcld 12079 . . . . . . . 8 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
126 dvds2add 15635 . . . . . . . 8 (((𝑀↑2) ∈ ℤ ∧ ((𝐴↑2) + (𝐵↑2)) ∈ ℤ ∧ ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) → (((𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2)) ∧ (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
12796, 124, 125, 126syl3anc 1368 . . . . . . 7 (𝜑 → (((𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2)) ∧ (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
128127adantr 484 . . . . . 6 ((𝜑𝑅 = 0) → (((𝑀↑2) ∥ ((𝐴↑2) + (𝐵↑2)) ∧ (𝑀↑2) ∥ ((𝐶↑2) + (𝐷↑2))) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))))
129104, 123, 128mp2and 698 . . . . 5 ((𝜑𝑅 = 0) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
130 4sq.1 . . . . . . . . . . . . . 14 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
131 4sq.2 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
132 4sq.3 . . . . . . . . . . . . . 14 (𝜑𝑃 = ((2 · 𝑁) + 1))
133 4sq.4 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
134 4sq.5 . . . . . . . . . . . . . 14 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
135 4sq.6 . . . . . . . . . . . . . 14 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
136 4sq.7 . . . . . . . . . . . . . 14 𝑀 = inf(𝑇, ℝ, < )
137 4sq.p . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
138130, 131, 132, 133, 134, 135, 136, 3, 2, 12, 20, 27, 6, 13, 21, 28, 1, 1374sqlem15 16285 . . . . . . . . . . . . 13 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
139138simpld 498 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
140139simpld 498 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0)
1412, 5, 6, 1404sqlem10 16273 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
142139simprd 499 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)
14312, 5, 13, 1424sqlem10 16273 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((𝐵↑2) − (((𝑀↑2) / 2) / 2)))
14496adantr 484 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∈ ℤ)
14598adantr 484 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (𝐴↑2) ∈ ℤ)
14638recnd 10658 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℂ)
14710zcnd 12076 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸↑2) ∈ ℂ)
148146, 147subeq0ad 10996 . . . . . . . . . . . . . . 15 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ↔ (((𝑀↑2) / 2) / 2) = (𝐸↑2)))
149148adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ↔ (((𝑀↑2) / 2) / 2) = (𝐸↑2)))
150140, 149mpbid 235 . . . . . . . . . . . . 13 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) / 2) = (𝐸↑2))
15110adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑅 = 𝑀) → (𝐸↑2) ∈ ℤ)
152150, 151eqeltrd 2890 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) / 2) ∈ ℤ)
153145, 152zsubcld 12080 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((𝐴↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ)
154100adantr 484 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (𝐵↑2) ∈ ℤ)
155154, 152zsubcld 12080 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((𝐵↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ)
156 dvds2add 15635 . . . . . . . . . . 11 (((𝑀↑2) ∈ ℤ ∧ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ ∧ ((𝐵↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ) → (((𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)) ∧ (𝑀↑2) ∥ ((𝐵↑2) − (((𝑀↑2) / 2) / 2))) → (𝑀↑2) ∥ (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2)))))
157144, 153, 155, 156syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)) ∧ (𝑀↑2) ∥ ((𝐵↑2) − (((𝑀↑2) / 2) / 2))) → (𝑀↑2) ∥ (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2)))))
158141, 143, 157mp2and 698 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2))))
15998zcnd 12076 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) ∈ ℂ)
160100zcnd 12076 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℂ)
161159, 160, 146, 146addsub4d 11033 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) = (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2))))
16243oveq2d 7151 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)))
163161, 162eqtr3d 2835 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)))
164163adantr 484 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((𝐴↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐵↑2) − (((𝑀↑2) / 2) / 2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)))
165158, 164breqtrd 5056 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)))
166138simprd 499 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
167166simpld 498 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0)
16820, 5, 21, 1674sqlem10 16273 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((𝐶↑2) − (((𝑀↑2) / 2) / 2)))
169166simprd 499 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)
17027, 5, 28, 1694sqlem10 16273 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((𝐷↑2) − (((𝑀↑2) / 2) / 2)))
171117adantr 484 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (𝐶↑2) ∈ ℤ)
172171, 152zsubcld 12080 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((𝐶↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ)
173119adantr 484 . . . . . . . . . . . 12 ((𝜑𝑅 = 𝑀) → (𝐷↑2) ∈ ℤ)
174173, 152zsubcld 12080 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((𝐷↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ)
175 dvds2add 15635 . . . . . . . . . . 11 (((𝑀↑2) ∈ ℤ ∧ ((𝐶↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ ∧ ((𝐷↑2) − (((𝑀↑2) / 2) / 2)) ∈ ℤ) → (((𝑀↑2) ∥ ((𝐶↑2) − (((𝑀↑2) / 2) / 2)) ∧ (𝑀↑2) ∥ ((𝐷↑2) − (((𝑀↑2) / 2) / 2))) → (𝑀↑2) ∥ (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2)))))
176144, 172, 174, 175syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) ∥ ((𝐶↑2) − (((𝑀↑2) / 2) / 2)) ∧ (𝑀↑2) ∥ ((𝐷↑2) − (((𝑀↑2) / 2) / 2))) → (𝑀↑2) ∥ (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2)))))
177168, 170, 176mp2and 698 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2))))
178117zcnd 12076 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∈ ℂ)
179119zcnd 12076 . . . . . . . . . . . 12 (𝜑 → (𝐷↑2) ∈ ℂ)
180178, 179, 146, 146addsub4d 11033 . . . . . . . . . . 11 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) = (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2))))
18143oveq2d 7151 . . . . . . . . . . 11 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) = (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))
182180, 181eqtr3d 2835 . . . . . . . . . 10 (𝜑 → (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2))) = (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))
183182adantr 484 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((𝐶↑2) − (((𝑀↑2) / 2) / 2)) + ((𝐷↑2) − (((𝑀↑2) / 2) / 2))) = (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))
184177, 183breqtrd 5056 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))
185124adantr 484 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
18643adantr 484 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
187152, 152zaddcld 12079 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) ∈ ℤ)
188186, 187eqeltrrd 2891 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) / 2) ∈ ℤ)
189185, 188zsubcld 12080 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) ∈ ℤ)
190125adantr 484 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
191190, 188zsubcld 12080 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)) ∈ ℤ)
192 dvds2add 15635 . . . . . . . . 9 (((𝑀↑2) ∈ ℤ ∧ (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) ∈ ℤ ∧ (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)) ∈ ℤ) → (((𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) ∧ (𝑀↑2) ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))) → (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))))
193144, 189, 191, 192syl3anc 1368 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) ∧ (𝑀↑2) ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))) → (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2)))))
194165, 184, 193mp2and 698 . . . . . . 7 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))))
195124zcnd 12076 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
196125zcnd 12076 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℂ)
197195, 196, 42, 42addsub4d 11033 . . . . . . . . 9 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝑀↑2) / 2) + ((𝑀↑2) / 2))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))))
19851oveq2d 7151 . . . . . . . . 9 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝑀↑2) / 2) + ((𝑀↑2) / 2))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2)))
199197, 198eqtr3d 2835 . . . . . . . 8 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2)))
200199adantr 484 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝐴↑2) + (𝐵↑2)) − ((𝑀↑2) / 2)) + (((𝐶↑2) + (𝐷↑2)) − ((𝑀↑2) / 2))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2)))
201194, 200breqtrd 5056 . . . . . 6 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2)))
202124, 125zaddcld 12079 . . . . . . . 8 (𝜑 → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ ℤ)
203202adantr 484 . . . . . . 7 ((𝜑𝑅 = 𝑀) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ ℤ)
204 dvdssubr 15647 . . . . . . 7 (((𝑀↑2) ∈ ℤ ∧ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ ℤ) → ((𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ↔ (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2))))
205144, 203, 204syl2anc 587 . . . . . 6 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ↔ (𝑀↑2) ∥ ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (𝑀↑2))))
206201, 205mpbird 260 . . . . 5 ((𝜑𝑅 = 𝑀) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
207129, 206jaodan 955 . . . 4 ((𝜑 ∧ (𝑅 = 0 ∨ 𝑅 = 𝑀)) → (𝑀↑2) ∥ (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
208137adantr 484 . . . 4 ((𝜑 ∧ (𝑅 = 0 ∨ 𝑅 = 𝑀)) → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
209207, 208breqtrrd 5058 . . 3 ((𝜑 ∧ (𝑅 = 0 ∨ 𝑅 = 𝑀)) → (𝑀↑2) ∥ (𝑀 · 𝑃))
210209ex 416 . 2 (𝜑 → ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃)))
21161, 210jca 515 1 (𝜑 → (𝑅𝑀 ∧ ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  {cab 2776  wrex 3107  {crab 3110  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  infcinf 8889  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885   mod cmo 13232  cexp 13425  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834
This theorem is referenced by:  4sqlem17  16287
  Copyright terms: Public domain W3C validator