MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem15 Structured version   Visualization version   GIF version

Theorem 4sqlem15 16993
Description: Lemma for 4sq 16998. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem15 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝐻   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑛,𝐹   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛   𝑅,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem15
StepHypRef Expression
1 4sq.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘2))
2 eluz2nn 12922 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
31, 2syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
43nnred 12279 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
54resqcld 14162 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℝ)
65rehalfcld 12511 . . . . . . . . 9 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
76rehalfcld 12511 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
87recnd 11287 . . . . . . 7 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℂ)
9 4sq.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
10 4sq.e . . . . . . . . . . . 12 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 3, 104sqlem5 16976 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
1211simpld 494 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
13 zsqcl 14166 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℤ)
1412, 13syl 17 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℤ)
1514zred 12720 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℝ)
1615recnd 11287 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
17 4sq.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 4sq.f . . . . . . . . . . . 12 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 3, 184sqlem5 16976 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
2019simpld 494 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
21 zsqcl 14166 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℤ)
2322zred 12720 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℝ)
2423recnd 11287 . . . . . . 7 (𝜑 → (𝐹↑2) ∈ ℂ)
258, 8, 16, 24addsub4d 11665 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))))
266recnd 11287 . . . . . . . 8 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
27262halvesd 12510 . . . . . . 7 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
2827oveq1d 7446 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
2925, 28eqtr3d 2777 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
3029adantr 480 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
315recnd 11287 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℂ)
32312halvesd 12510 . . . . . . . . 9 (𝜑 → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
3332adantr 480 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
344recnd 11287 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
3534sqvald 14180 . . . . . . . . . 10 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
3635adantr 480 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) = (𝑀 · 𝑀))
37 4sq.r . . . . . . . . . . 11 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
38 simpr 484 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → 𝑅 = 𝑀)
3937, 38eqtr3id 2789 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 𝑀)
4039oveq1d 7446 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (𝑀 · 𝑀))
4115, 23readdcld 11288 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
42 4sq.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℤ)
43 4sq.g . . . . . . . . . . . . . . . . . 18 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4442, 3, 434sqlem5 16976 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
4544simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ ℤ)
46 zsqcl 14166 . . . . . . . . . . . . . . . 16 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℤ)
4745, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺↑2) ∈ ℤ)
4847zred 12720 . . . . . . . . . . . . . 14 (𝜑 → (𝐺↑2) ∈ ℝ)
49 4sq.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℤ)
50 4sq.h . . . . . . . . . . . . . . . . . 18 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5149, 3, 504sqlem5 16976 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
5251simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ∈ ℤ)
53 zsqcl 14166 . . . . . . . . . . . . . . . 16 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℤ)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻↑2) ∈ ℤ)
5554zred 12720 . . . . . . . . . . . . . 14 (𝜑 → (𝐻↑2) ∈ ℝ)
5648, 55readdcld 11288 . . . . . . . . . . . . 13 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℝ)
5741, 56readdcld 11288 . . . . . . . . . . . 12 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
5857recnd 11287 . . . . . . . . . . 11 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
593nnne0d 12314 . . . . . . . . . . 11 (𝜑𝑀 ≠ 0)
6058, 34, 59divcan1d 12042 . . . . . . . . . 10 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6160adantr 480 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6236, 40, 613eqtr2rd 2782 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = (𝑀↑2))
6333, 62oveq12d 7449 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((𝑀↑2) − (𝑀↑2)))
6441recnd 11287 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
6556recnd 11287 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
6626, 26, 64, 65addsub4d 11665 . . . . . . . 8 (𝜑 → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6766adantr 480 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6831subidd 11606 . . . . . . . 8 (𝜑 → ((𝑀↑2) − (𝑀↑2)) = 0)
6968adantr 480 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) − (𝑀↑2)) = 0)
7063, 67, 693eqtr3d 2783 . . . . . 6 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0)
716, 41resubcld 11689 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ)
729, 3, 104sqlem7 16978 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2))
7317, 3, 184sqlem7 16978 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2))
7415, 23, 7, 7, 72, 73le2addd 11880 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
7574, 27breqtrd 5174 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
766, 41subge0d 11851 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ↔ ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2)))
7775, 76mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
786, 56resubcld 11689 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
7942, 3, 434sqlem7 16978 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2))
8049, 3, 504sqlem7 16978 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2))
8148, 55, 7, 7, 79, 80le2addd 11880 . . . . . . . . . 10 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
8281, 27breqtrd 5174 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2))
836, 56subge0d 11851 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ↔ ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2)))
8482, 83mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
85 add20 11773 . . . . . . . 8 ((((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2)))) ∧ ((((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))) → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8671, 77, 78, 84, 85syl22anc 839 . . . . . . 7 (𝜑 → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8786biimpa 476 . . . . . 6 ((𝜑 ∧ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8870, 87syldan 591 . . . . 5 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8988simpld 494 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0)
9030, 89eqtrd 2775 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0)
917, 15resubcld 11689 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ)
927, 15subge0d 11851 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ↔ (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2)))
9372, 92mpbird 257 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)))
947, 23resubcld 11689 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ)
957, 23subge0d 11851 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ↔ (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2)))
9673, 95mpbird 257 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))
97 add20 11773 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9891, 93, 94, 96, 97syl22anc 839 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9998biimpa 476 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10090, 99syldan 591 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10148recnd 11287 . . . . . . 7 (𝜑 → (𝐺↑2) ∈ ℂ)
10255recnd 11287 . . . . . . 7 (𝜑 → (𝐻↑2) ∈ ℂ)
1038, 8, 101, 102addsub4d 11665 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))))
10427oveq1d 7446 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
105103, 104eqtr3d 2777 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
106105adantr 480 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
10788simprd 495 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)
108106, 107eqtrd 2775 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0)
1097, 48resubcld 11689 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ)
1107, 48subge0d 11851 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ↔ (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2)))
11179, 110mpbird 257 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)))
1127, 55resubcld 11689 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ)
1137, 55subge0d 11851 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ↔ (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2)))
11480, 113mpbird 257 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))
115 add20 11773 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
116109, 111, 112, 114, 115syl22anc 839 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
117116biimpa 476 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
118108, 117syldan 591 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
119100, 118jca 511 1 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wrex 3068  {crab 3433  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  infcinf 9479  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  cz 12611  cuz 12876  ...cfz 13544   mod cmo 13906  cexp 14099  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  4sqlem16  16994
  Copyright terms: Public domain W3C validator