MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem15 Structured version   Visualization version   GIF version

Theorem 4sqlem15 16475
Description: Lemma for 4sq 16480. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem15 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝐻   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑛,𝐹   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛   𝑅,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem15
StepHypRef Expression
1 4sq.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘2))
2 eluz2nn 12445 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
31, 2syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
43nnred 11810 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
54resqcld 13782 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℝ)
65rehalfcld 12042 . . . . . . . . 9 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
76rehalfcld 12042 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
87recnd 10826 . . . . . . 7 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℂ)
9 4sq.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
10 4sq.e . . . . . . . . . . . 12 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 3, 104sqlem5 16458 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
1211simpld 498 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
13 zsqcl 13665 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℤ)
1412, 13syl 17 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℤ)
1514zred 12247 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℝ)
1615recnd 10826 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
17 4sq.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 4sq.f . . . . . . . . . . . 12 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 3, 184sqlem5 16458 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
2019simpld 498 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
21 zsqcl 13665 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℤ)
2322zred 12247 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℝ)
2423recnd 10826 . . . . . . 7 (𝜑 → (𝐹↑2) ∈ ℂ)
258, 8, 16, 24addsub4d 11201 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))))
266recnd 10826 . . . . . . . 8 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
27262halvesd 12041 . . . . . . 7 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
2827oveq1d 7206 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
2925, 28eqtr3d 2773 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
3029adantr 484 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
315recnd 10826 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℂ)
32312halvesd 12041 . . . . . . . . 9 (𝜑 → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
3332adantr 484 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
344recnd 10826 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
3534sqvald 13678 . . . . . . . . . 10 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
3635adantr 484 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) = (𝑀 · 𝑀))
37 4sq.r . . . . . . . . . . 11 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
38 simpr 488 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → 𝑅 = 𝑀)
3937, 38eqtr3id 2785 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 𝑀)
4039oveq1d 7206 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (𝑀 · 𝑀))
4115, 23readdcld 10827 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
42 4sq.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℤ)
43 4sq.g . . . . . . . . . . . . . . . . . 18 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4442, 3, 434sqlem5 16458 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
4544simpld 498 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ ℤ)
46 zsqcl 13665 . . . . . . . . . . . . . . . 16 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℤ)
4745, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺↑2) ∈ ℤ)
4847zred 12247 . . . . . . . . . . . . . 14 (𝜑 → (𝐺↑2) ∈ ℝ)
49 4sq.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℤ)
50 4sq.h . . . . . . . . . . . . . . . . . 18 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5149, 3, 504sqlem5 16458 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
5251simpld 498 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ∈ ℤ)
53 zsqcl 13665 . . . . . . . . . . . . . . . 16 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℤ)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻↑2) ∈ ℤ)
5554zred 12247 . . . . . . . . . . . . . 14 (𝜑 → (𝐻↑2) ∈ ℝ)
5648, 55readdcld 10827 . . . . . . . . . . . . 13 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℝ)
5741, 56readdcld 10827 . . . . . . . . . . . 12 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
5857recnd 10826 . . . . . . . . . . 11 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
593nnne0d 11845 . . . . . . . . . . 11 (𝜑𝑀 ≠ 0)
6058, 34, 59divcan1d 11574 . . . . . . . . . 10 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6160adantr 484 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6236, 40, 613eqtr2rd 2778 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = (𝑀↑2))
6333, 62oveq12d 7209 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((𝑀↑2) − (𝑀↑2)))
6441recnd 10826 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
6556recnd 10826 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
6626, 26, 64, 65addsub4d 11201 . . . . . . . 8 (𝜑 → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6766adantr 484 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6831subidd 11142 . . . . . . . 8 (𝜑 → ((𝑀↑2) − (𝑀↑2)) = 0)
6968adantr 484 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) − (𝑀↑2)) = 0)
7063, 67, 693eqtr3d 2779 . . . . . 6 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0)
716, 41resubcld 11225 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ)
729, 3, 104sqlem7 16460 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2))
7317, 3, 184sqlem7 16460 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2))
7415, 23, 7, 7, 72, 73le2addd 11416 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
7574, 27breqtrd 5065 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
766, 41subge0d 11387 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ↔ ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2)))
7775, 76mpbird 260 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
786, 56resubcld 11225 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
7942, 3, 434sqlem7 16460 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2))
8049, 3, 504sqlem7 16460 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2))
8148, 55, 7, 7, 79, 80le2addd 11416 . . . . . . . . . 10 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
8281, 27breqtrd 5065 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2))
836, 56subge0d 11387 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ↔ ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2)))
8482, 83mpbird 260 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
85 add20 11309 . . . . . . . 8 ((((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2)))) ∧ ((((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))) → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8671, 77, 78, 84, 85syl22anc 839 . . . . . . 7 (𝜑 → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8786biimpa 480 . . . . . 6 ((𝜑 ∧ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8870, 87syldan 594 . . . . 5 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8988simpld 498 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0)
9030, 89eqtrd 2771 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0)
917, 15resubcld 11225 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ)
927, 15subge0d 11387 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ↔ (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2)))
9372, 92mpbird 260 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)))
947, 23resubcld 11225 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ)
957, 23subge0d 11387 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ↔ (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2)))
9673, 95mpbird 260 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))
97 add20 11309 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9891, 93, 94, 96, 97syl22anc 839 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9998biimpa 480 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10090, 99syldan 594 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10148recnd 10826 . . . . . . 7 (𝜑 → (𝐺↑2) ∈ ℂ)
10255recnd 10826 . . . . . . 7 (𝜑 → (𝐻↑2) ∈ ℂ)
1038, 8, 101, 102addsub4d 11201 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))))
10427oveq1d 7206 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
105103, 104eqtr3d 2773 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
106105adantr 484 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
10788simprd 499 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)
108106, 107eqtrd 2771 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0)
1097, 48resubcld 11225 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ)
1107, 48subge0d 11387 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ↔ (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2)))
11179, 110mpbird 260 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)))
1127, 55resubcld 11225 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ)
1137, 55subge0d 11387 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ↔ (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2)))
11480, 113mpbird 260 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))
115 add20 11309 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
116109, 111, 112, 114, 115syl22anc 839 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
117116biimpa 480 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
118108, 117syldan 594 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
119100, 118jca 515 1 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  {cab 2714  wrex 3052  {crab 3055  wss 3853   class class class wbr 5039  cfv 6358  (class class class)co 7191  infcinf 9035  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027   / cdiv 11454  cn 11795  2c2 11850  cz 12141  cuz 12403  ...cfz 13060   mod cmo 13407  cexp 13600  cprime 16191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764
This theorem is referenced by:  4sqlem16  16476
  Copyright terms: Public domain W3C validator