| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addclpr | Structured version Visualization version GIF version | ||
| Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addclpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plp 10995 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦 +Q 𝑧)}) | |
| 2 | addclnq 10957 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 +Q 𝑧) ∈ Q) | |
| 3 | ltanq 10983 | . 2 ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ +Q 𝑓) <Q (ℎ +Q 𝑔))) | |
| 4 | addcomnq 10963 | . 2 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
| 5 | addclprlem2 11029 | . 2 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → 𝑥 ∈ (𝐴 +P 𝐵))) | |
| 6 | 1, 2, 3, 4, 5 | genpcl 11020 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7403 +Q cplq 10867 Pcnp 10871 +P cpp 10873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-omul 8483 df-er 8717 df-ni 10884 df-pli 10885 df-mi 10886 df-lti 10887 df-plpq 10920 df-mpq 10921 df-ltpq 10922 df-enq 10923 df-nq 10924 df-erq 10925 df-plq 10926 df-mq 10927 df-1nq 10928 df-rq 10929 df-ltnq 10930 df-np 10993 df-plp 10995 |
| This theorem is referenced by: addasspr 11034 distrlem1pr 11037 distrlem4pr 11038 ltaddpr 11046 ltexprlem7 11054 ltaprlem 11056 ltapr 11057 addcanpr 11058 enrer 11075 addcmpblnr 11081 mulcmpblnr 11083 ltsrpr 11089 1sr 11093 m1r 11094 addclsr 11095 mulclsr 11096 addasssr 11100 mulasssr 11102 distrsr 11103 m1p1sr 11104 m1m1sr 11105 ltsosr 11106 0lt1sr 11107 0idsr 11109 1idsr 11110 00sr 11111 ltasr 11112 recexsrlem 11115 mulgt0sr 11117 mappsrpr 11120 |
| Copyright terms: Public domain | W3C validator |