MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclpr Structured version   Visualization version   GIF version

Theorem addclpr 10440
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclpr ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)

Proof of Theorem addclpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plp 10405 . 2 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
2 addclnq 10367 . 2 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
3 ltanq 10393 . 2 (Q → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4 addcomnq 10373 . 2 (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)
5 addclprlem2 10439 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
61, 2, 3, 4, 5genpcl 10430 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  (class class class)co 7156   +Q cplq 10277  Pcnp 10281   +P cpp 10283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-plp 10405
This theorem is referenced by:  addasspr  10444  distrlem1pr  10447  distrlem4pr  10448  ltaddpr  10456  ltexprlem7  10464  ltaprlem  10466  ltapr  10467  addcanpr  10468  enrer  10485  addcmpblnr  10491  mulcmpblnr  10493  ltsrpr  10499  1sr  10503  m1r  10504  addclsr  10505  mulclsr  10506  addasssr  10510  mulasssr  10512  distrsr  10513  m1p1sr  10514  m1m1sr  10515  ltsosr  10516  0lt1sr  10517  0idsr  10519  1idsr  10520  00sr  10521  ltasr  10522  recexsrlem  10525  mulgt0sr  10527  mappsrpr  10530
  Copyright terms: Public domain W3C validator