MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclpr Structured version   Visualization version   GIF version

Theorem addclpr 11087
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclpr ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)

Proof of Theorem addclpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plp 11052 . 2 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
2 addclnq 11014 . 2 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
3 ltanq 11040 . 2 (Q → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4 addcomnq 11020 . 2 (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)
5 addclprlem2 11086 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
61, 2, 3, 4, 5genpcl 11077 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  (class class class)co 7448   +Q cplq 10924  Pcnp 10928   +P cpp 10930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-plp 11052
This theorem is referenced by:  addasspr  11091  distrlem1pr  11094  distrlem4pr  11095  ltaddpr  11103  ltexprlem7  11111  ltaprlem  11113  ltapr  11114  addcanpr  11115  enrer  11132  addcmpblnr  11138  mulcmpblnr  11140  ltsrpr  11146  1sr  11150  m1r  11151  addclsr  11152  mulclsr  11153  addasssr  11157  mulasssr  11159  distrsr  11160  m1p1sr  11161  m1m1sr  11162  ltsosr  11163  0lt1sr  11164  0idsr  11166  1idsr  11167  00sr  11168  ltasr  11169  recexsrlem  11172  mulgt0sr  11174  mappsrpr  11177
  Copyright terms: Public domain W3C validator