![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addclpr | Structured version Visualization version GIF version |
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addclpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp 10978 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦 +Q 𝑧)}) | |
2 | addclnq 10940 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 +Q 𝑧) ∈ Q) | |
3 | ltanq 10966 | . 2 ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ +Q 𝑓) <Q (ℎ +Q 𝑔))) | |
4 | addcomnq 10946 | . 2 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
5 | addclprlem2 11012 | . 2 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → 𝑥 ∈ (𝐴 +P 𝐵))) | |
6 | 1, 2, 3, 4, 5 | genpcl 11003 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 (class class class)co 7409 +Q cplq 10850 Pcnp 10854 +P cpp 10856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-plp 10978 |
This theorem is referenced by: addasspr 11017 distrlem1pr 11020 distrlem4pr 11021 ltaddpr 11029 ltexprlem7 11037 ltaprlem 11039 ltapr 11040 addcanpr 11041 enrer 11058 addcmpblnr 11064 mulcmpblnr 11066 ltsrpr 11072 1sr 11076 m1r 11077 addclsr 11078 mulclsr 11079 addasssr 11083 mulasssr 11085 distrsr 11086 m1p1sr 11087 m1m1sr 11088 ltsosr 11089 0lt1sr 11090 0idsr 11092 1idsr 11093 00sr 11094 ltasr 11095 recexsrlem 11098 mulgt0sr 11100 mappsrpr 11103 |
Copyright terms: Public domain | W3C validator |