Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclquadb Structured version   Visualization version   GIF version

Theorem itsclquadb 44071
Description: Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 22-Feb-2023.)
Hypotheses
Ref Expression
itsclquadb.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclquadb.t 𝑇 = -(2 · (𝐵 · 𝐶))
itsclquadb.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itsclquadb ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝑥,𝑈   𝑥,𝑌

Proof of Theorem itsclquadb
StepHypRef Expression
1 simpl1 1171 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
2 simp2 1117 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑅 ∈ ℝ+)
32adantr 473 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑅 ∈ ℝ+)
4 simp3 1118 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑌 ∈ ℝ)
54anim1ci 606 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ℝ ∧ 𝑌 ∈ ℝ))
6 itsclquadb.q . . . . 5 𝑄 = ((𝐴↑2) + (𝐵↑2))
7 itsclquadb.t . . . . 5 𝑇 = -(2 · (𝐵 · 𝐶))
8 itsclquadb.u . . . . 5 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
96, 7, 8itscnhlc0yqe 44054 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑥 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
101, 3, 5, 9syl3anc 1351 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
1110rexlimdva 3223 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
12 simp3 1118 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
13123ad2ant1 1113 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐶 ∈ ℝ)
14 simp2 1117 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
15143ad2ant1 1113 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐵 ∈ ℝ)
1615, 4remulcld 10462 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℝ)
1713, 16resubcld 10861 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶 − (𝐵 · 𝑌)) ∈ ℝ)
18 simp11l 1264 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ∈ ℝ)
19 simp11r 1265 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ≠ 0)
2017, 18, 19redivcld 11261 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶 − (𝐵 · 𝑌)) / 𝐴) ∈ ℝ)
2120adantr 473 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → ((𝐶 − (𝐵 · 𝑌)) / 𝐴) ∈ ℝ)
22 oveq1 6977 . . . . . . . 8 (𝑥 = ((𝐶 − (𝐵 · 𝑌)) / 𝐴) → (𝑥↑2) = (((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2))
2322oveq1d 6985 . . . . . . 7 (𝑥 = ((𝐶 − (𝐵 · 𝑌)) / 𝐴) → ((𝑥↑2) + (𝑌↑2)) = ((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)))
2423eqeq1d 2774 . . . . . 6 (𝑥 = ((𝐶 − (𝐵 · 𝑌)) / 𝐴) → (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ↔ ((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)) = (𝑅↑2)))
25 oveq2 6978 . . . . . . . 8 (𝑥 = ((𝐶 − (𝐵 · 𝑌)) / 𝐴) → (𝐴 · 𝑥) = (𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)))
2625oveq1d 6985 . . . . . . 7 (𝑥 = ((𝐶 − (𝐵 · 𝑌)) / 𝐴) → ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = ((𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) + (𝐵 · 𝑌)))
2726eqeq1d 2774 . . . . . 6 (𝑥 = ((𝐶 − (𝐵 · 𝑌)) / 𝐴) → (((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) + (𝐵 · 𝑌)) = 𝐶))
2824, 27anbi12d 621 . . . . 5 (𝑥 = ((𝐶 − (𝐵 · 𝑌)) / 𝐴) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ (((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) + (𝐵 · 𝑌)) = 𝐶)))
2928adantl 474 . . . 4 ((((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ∧ 𝑥 = ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) → ((((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ (((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) + (𝐵 · 𝑌)) = 𝐶)))
3017recnd 10460 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶 − (𝐵 · 𝑌)) ∈ ℂ)
3118recnd 10460 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐴 ∈ ℂ)
3230, 31, 19sqdivd 13331 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) = (((𝐶 − (𝐵 · 𝑌))↑2) / (𝐴↑2)))
3313recnd 10460 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐶 ∈ ℂ)
3416recnd 10460 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 · 𝑌) ∈ ℂ)
35 binom2sub 13389 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ (𝐵 · 𝑌) ∈ ℂ) → ((𝐶 − (𝐵 · 𝑌))↑2) = (((𝐶↑2) − (2 · (𝐶 · (𝐵 · 𝑌)))) + ((𝐵 · 𝑌)↑2)))
3633, 34, 35syl2anc 576 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶 − (𝐵 · 𝑌))↑2) = (((𝐶↑2) − (2 · (𝐶 · (𝐵 · 𝑌)))) + ((𝐵 · 𝑌)↑2)))
3713resqcld 13419 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶↑2) ∈ ℝ)
3837recnd 10460 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶↑2) ∈ ℂ)
39 2re 11507 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
4039a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 2 ∈ ℝ)
4113, 16remulcld 10462 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶 · (𝐵 · 𝑌)) ∈ ℝ)
4240, 41remulcld 10462 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (2 · (𝐶 · (𝐵 · 𝑌))) ∈ ℝ)
4342recnd 10460 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (2 · (𝐶 · (𝐵 · 𝑌))) ∈ ℂ)
4438, 43negsubd 10796 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) + -(2 · (𝐶 · (𝐵 · 𝑌)))) = ((𝐶↑2) − (2 · (𝐶 · (𝐵 · 𝑌)))))
4515recnd 10460 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝐵 ∈ ℂ)
464recnd 10460 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑌 ∈ ℂ)
4733, 45, 46mulassd 10455 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶 · 𝐵) · 𝑌) = (𝐶 · (𝐵 · 𝑌)))
4847eqcomd 2778 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶 · (𝐵 · 𝑌)) = ((𝐶 · 𝐵) · 𝑌))
4948oveq2d 6986 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (2 · (𝐶 · (𝐵 · 𝑌))) = (2 · ((𝐶 · 𝐵) · 𝑌)))
50 2cnd 11511 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 2 ∈ ℂ)
5113, 15remulcld 10462 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
5251recnd 10460 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℂ)
5350, 52, 46mulassd 10455 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((2 · (𝐶 · 𝐵)) · 𝑌) = (2 · ((𝐶 · 𝐵) · 𝑌)))
5453eqcomd 2778 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (2 · ((𝐶 · 𝐵) · 𝑌)) = ((2 · (𝐶 · 𝐵)) · 𝑌))
5533, 45mulcomd 10453 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐶 · 𝐵) = (𝐵 · 𝐶))
5655oveq2d 6986 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (2 · (𝐶 · 𝐵)) = (2 · (𝐵 · 𝐶)))
5756oveq1d 6985 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((2 · (𝐶 · 𝐵)) · 𝑌) = ((2 · (𝐵 · 𝐶)) · 𝑌))
5849, 54, 573eqtrd 2812 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (2 · (𝐶 · (𝐵 · 𝑌))) = ((2 · (𝐵 · 𝐶)) · 𝑌))
5958negeqd 10672 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → -(2 · (𝐶 · (𝐵 · 𝑌))) = -((2 · (𝐵 · 𝐶)) · 𝑌))
6059oveq2d 6986 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) + -(2 · (𝐶 · (𝐵 · 𝑌)))) = ((𝐶↑2) + -((2 · (𝐵 · 𝐶)) · 𝑌)))
6144, 60eqtr3d 2810 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) − (2 · (𝐶 · (𝐵 · 𝑌)))) = ((𝐶↑2) + -((2 · (𝐵 · 𝐶)) · 𝑌)))
6245, 46sqmuld 13330 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵 · 𝑌)↑2) = ((𝐵↑2) · (𝑌↑2)))
6361, 62oveq12d 6988 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) − (2 · (𝐶 · (𝐵 · 𝑌)))) + ((𝐵 · 𝑌)↑2)) = (((𝐶↑2) + -((2 · (𝐵 · 𝐶)) · 𝑌)) + ((𝐵↑2) · (𝑌↑2))))
6415, 13remulcld 10462 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
6540, 64remulcld 10462 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
6665recnd 10460 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
6766, 46mulneg1d 10886 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (-(2 · (𝐵 · 𝐶)) · 𝑌) = -((2 · (𝐵 · 𝐶)) · 𝑌))
687eqcomi 2781 . . . . . . . . . . . . . . . . 17 -(2 · (𝐵 · 𝐶)) = 𝑇
6968oveq1i 6980 . . . . . . . . . . . . . . . 16 (-(2 · (𝐵 · 𝐶)) · 𝑌) = (𝑇 · 𝑌)
7069a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (-(2 · (𝐵 · 𝐶)) · 𝑌) = (𝑇 · 𝑌))
7167, 70eqtr3d 2810 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → -((2 · (𝐵 · 𝐶)) · 𝑌) = (𝑇 · 𝑌))
7271oveq2d 6986 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) + -((2 · (𝐵 · 𝐶)) · 𝑌)) = ((𝐶↑2) + (𝑇 · 𝑌)))
7372oveq1d 6985 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) + -((2 · (𝐵 · 𝐶)) · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) = (((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))))
7436, 63, 733eqtrd 2812 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶 − (𝐵 · 𝑌))↑2) = (((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))))
7574oveq1d 6985 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶 − (𝐵 · 𝑌))↑2) / (𝐴↑2)) = ((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) / (𝐴↑2)))
7632, 75eqtrd 2808 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) = ((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) / (𝐴↑2)))
77 resqcl 13298 . . . . . . . . . . . . 13 (𝑌 ∈ ℝ → (𝑌↑2) ∈ ℝ)
7877recnd 10460 . . . . . . . . . . . 12 (𝑌 ∈ ℝ → (𝑌↑2) ∈ ℂ)
79783ad2ant3 1115 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝑌↑2) ∈ ℂ)
8018resqcld 13419 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐴↑2) ∈ ℝ)
8180recnd 10460 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐴↑2) ∈ ℂ)
82 recn 10417 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
83 sqne0 13297 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0))
8482, 83syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0))
8584biimpar 470 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴↑2) ≠ 0)
86853ad2ant1 1113 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) ≠ 0)
87863ad2ant1 1113 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐴↑2) ≠ 0)
8879, 81, 87divcan2d 11211 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴↑2) · ((𝑌↑2) / (𝐴↑2))) = (𝑌↑2))
8988eqcomd 2778 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝑌↑2) = ((𝐴↑2) · ((𝑌↑2) / (𝐴↑2))))
9076, 89oveq12d 6988 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)) = (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) / (𝐴↑2)) + ((𝐴↑2) · ((𝑌↑2) / (𝐴↑2)))))
9181, 79, 81, 87divassd 11244 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐴↑2) · (𝑌↑2)) / (𝐴↑2)) = ((𝐴↑2) · ((𝑌↑2) / (𝐴↑2))))
9291eqcomd 2778 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴↑2) · ((𝑌↑2) / (𝐴↑2))) = (((𝐴↑2) · (𝑌↑2)) / (𝐴↑2)))
9392oveq2d 6986 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) / (𝐴↑2)) + ((𝐴↑2) · ((𝑌↑2) / (𝐴↑2)))) = (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) / (𝐴↑2)) + (((𝐴↑2) · (𝑌↑2)) / (𝐴↑2))))
9465renegcld 10860 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → -(2 · (𝐵 · 𝐶)) ∈ ℝ)
957, 94syl5eqel 2864 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → 𝑇 ∈ ℝ)
9695, 4remulcld 10462 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝑇 · 𝑌) ∈ ℝ)
9737, 96readdcld 10461 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) + (𝑇 · 𝑌)) ∈ ℝ)
9815resqcld 13419 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵↑2) ∈ ℝ)
994resqcld 13419 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝑌↑2) ∈ ℝ)
10098, 99remulcld 10462 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵↑2) · (𝑌↑2)) ∈ ℝ)
10197, 100readdcld 10461 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) ∈ ℝ)
102101recnd 10460 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) ∈ ℂ)
10380, 99remulcld 10462 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴↑2) · (𝑌↑2)) ∈ ℝ)
104103recnd 10460 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴↑2) · (𝑌↑2)) ∈ ℂ)
105102, 104, 81, 87divdird 11247 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) + ((𝐴↑2) · (𝑌↑2))) / (𝐴↑2)) = (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) / (𝐴↑2)) + (((𝐴↑2) · (𝑌↑2)) / (𝐴↑2))))
106105eqcomd 2778 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) / (𝐴↑2)) + (((𝐴↑2) · (𝑌↑2)) / (𝐴↑2))) = (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) + ((𝐴↑2) · (𝑌↑2))) / (𝐴↑2)))
10790, 93, 1063eqtrd 2812 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)) = (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) + ((𝐴↑2) · (𝑌↑2))) / (𝐴↑2)))
108107adantr 473 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → ((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)) = (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) + ((𝐴↑2) · (𝑌↑2))) / (𝐴↑2)))
10997recnd 10460 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) + (𝑇 · 𝑌)) ∈ ℂ)
110100recnd 10460 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵↑2) · (𝑌↑2)) ∈ ℂ)
111109, 110, 104addassd 10454 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) + ((𝐴↑2) · (𝑌↑2))) = (((𝐶↑2) + (𝑇 · 𝑌)) + (((𝐵↑2) · (𝑌↑2)) + ((𝐴↑2) · (𝑌↑2)))))
11298recnd 10460 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵↑2) ∈ ℂ)
11399recnd 10460 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝑌↑2) ∈ ℂ)
114112, 81, 113adddird 10457 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐵↑2) + (𝐴↑2)) · (𝑌↑2)) = (((𝐵↑2) · (𝑌↑2)) + ((𝐴↑2) · (𝑌↑2))))
115112, 81addcomd 10634 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2)))
116115oveq1d 6985 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐵↑2) + (𝐴↑2)) · (𝑌↑2)) = (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)))
117114, 116eqtr3d 2810 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐵↑2) · (𝑌↑2)) + ((𝐴↑2) · (𝑌↑2))) = (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)))
118117oveq2d 6986 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) + (𝑇 · 𝑌)) + (((𝐵↑2) · (𝑌↑2)) + ((𝐴↑2) · (𝑌↑2)))) = (((𝐶↑2) + (𝑇 · 𝑌)) + (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2))))
11996recnd 10460 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝑇 · 𝑌) ∈ ℂ)
12080, 98readdcld 10461 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴↑2) + (𝐵↑2)) ∈ ℝ)
121120, 99remulcld 10462 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) ∈ ℝ)
122121recnd 10460 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) ∈ ℂ)
12338, 119, 122addassd 10454 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) + (𝑇 · 𝑌)) + (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2))) = ((𝐶↑2) + ((𝑇 · 𝑌) + (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)))))
124119, 122addcomd 10634 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝑇 · 𝑌) + (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2))) = ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)))
125124oveq2d 6986 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) + ((𝑇 · 𝑌) + (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)))) = ((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))))
126123, 125eqtrd 2808 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) + (𝑇 · 𝑌)) + (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2))) = ((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))))
127111, 118, 1263eqtrd 2812 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) + ((𝐴↑2) · (𝑌↑2))) = ((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))))
128127adantr 473 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → ((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) + ((𝐴↑2) · (𝑌↑2))) = ((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))))
129128oveq1d 6985 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → (((((𝐶↑2) + (𝑇 · 𝑌)) + ((𝐵↑2) · (𝑌↑2))) + ((𝐴↑2) · (𝑌↑2))) / (𝐴↑2)) = (((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))) / (𝐴↑2)))
130 rpre 12205 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
131130resqcld 13419 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
1321313ad2ant2 1114 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
13380, 132remulcld 10462 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴↑2) · (𝑅↑2)) ∈ ℝ)
13437, 133resubcld 10861 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ∈ ℝ)
135134recnd 10460 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ∈ ℂ)
136122, 119, 135addassd 10454 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + ((𝑇 · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))))
1376oveq1i 6980 . . . . . . . . . . . 12 (𝑄 · (𝑌↑2)) = (((𝐴↑2) + (𝐵↑2)) · (𝑌↑2))
1388oveq2i 6981 . . . . . . . . . . . 12 ((𝑇 · 𝑌) + 𝑈) = ((𝑇 · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))
139137, 138oveq12i 6982 . . . . . . . . . . 11 ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + ((𝑇 · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))
140136, 139syl6reqr 2827 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = (((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))
141140eqeq1d 2774 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0 ↔ (((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = 0))
142121, 96readdcld 10461 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) ∈ ℝ)
143142recnd 10460 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) ∈ ℂ)
144 addeq0 10856 . . . . . . . . . 10 ((((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) ∈ ℂ ∧ ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ∈ ℂ) → ((((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = 0 ↔ ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) = -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))
145143, 135, 144syl2anc 576 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = 0 ↔ ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) = -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))
146141, 145bitrd 271 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0 ↔ ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) = -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))
147 oveq2 6978 . . . . . . . . . . 11 (((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) = -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) → ((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))) = ((𝐶↑2) + -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))
148147oveq1d 6985 . . . . . . . . . 10 (((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) = -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) → (((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))) / (𝐴↑2)) = (((𝐶↑2) + -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) / (𝐴↑2)))
14938, 135negsubd 10796 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) + -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((𝐶↑2) − ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))
150133recnd 10460 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴↑2) · (𝑅↑2)) ∈ ℂ)
15138, 150nncand 10795 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) − ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((𝐴↑2) · (𝑅↑2)))
152149, 151eqtrd 2808 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶↑2) + -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) = ((𝐴↑2) · (𝑅↑2)))
153152oveq1d 6985 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) + -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) / (𝐴↑2)) = (((𝐴↑2) · (𝑅↑2)) / (𝐴↑2)))
154132recnd 10460 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
155154, 81, 87divcan3d 11214 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐴↑2) · (𝑅↑2)) / (𝐴↑2)) = (𝑅↑2))
156153, 155eqtrd 2808 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝐶↑2) + -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) / (𝐴↑2)) = (𝑅↑2))
157148, 156sylan9eqr 2830 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) = -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))) → (((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))) / (𝐴↑2)) = (𝑅↑2))
158157ex 405 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌)) = -((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) → (((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))) / (𝐴↑2)) = (𝑅↑2)))
159146, 158sylbid 232 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0 → (((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))) / (𝐴↑2)) = (𝑅↑2)))
160159imp 398 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → (((𝐶↑2) + ((((𝐴↑2) + (𝐵↑2)) · (𝑌↑2)) + (𝑇 · 𝑌))) / (𝐴↑2)) = (𝑅↑2))
161108, 129, 1603eqtrd 2812 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → ((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)) = (𝑅↑2))
16230, 31, 19divcan2d 11211 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) = (𝐶 − (𝐵 · 𝑌)))
163162oveq1d 6985 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) + (𝐵 · 𝑌)) = ((𝐶 − (𝐵 · 𝑌)) + (𝐵 · 𝑌)))
16433, 34npcand 10794 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐶 − (𝐵 · 𝑌)) + (𝐵 · 𝑌)) = 𝐶)
165163, 164eqtrd 2808 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) + (𝐵 · 𝑌)) = 𝐶)
166165adantr 473 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → ((𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) + (𝐵 · 𝑌)) = 𝐶)
167161, 166jca 504 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → (((((𝐶 − (𝐵 · 𝑌)) / 𝐴)↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · ((𝐶 − (𝐵 · 𝑌)) / 𝐴)) + (𝐵 · 𝑌)) = 𝐶))
16821, 29, 167rspcedvd 3536 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) ∧ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) → ∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶))
169168ex 405 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0 → ∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶)))
17011, 169impbid 204 1 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wrex 3083  (class class class)co 6970  cc 10325  cr 10326  0cc0 10327   + caddc 10330   · cmul 10332  cmin 10662  -cneg 10663   / cdiv 11090  2c2 11488  +crp 12197  cexp 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-n0 11701  df-z 11787  df-uz 12052  df-rp 12198  df-seq 13178  df-exp 13238
This theorem is referenced by:  itsclquadeu  44072
  Copyright terms: Public domain W3C validator