Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminplylem5 Structured version   Visualization version   GIF version

Theorem cos9thpiminplylem5 33783
Description: The constructed complex number 𝐴 is a root of the polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)). (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
cos9thpiminplylem3.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminplylem4.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminplylem5.3 𝐴 = (𝑍 + (1 / 𝑍))
Assertion
Ref Expression
cos9thpiminplylem5 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0

Proof of Theorem cos9thpiminplylem5
StepHypRef Expression
1 cos9thpiminplylem5.3 . . . . 5 𝐴 = (𝑍 + (1 / 𝑍))
2 cos9thpiminplylem4.2 . . . . . . 7 𝑍 = (𝑂𝑐(1 / 3))
3 cos9thpiminplylem3.1 . . . . . . . . 9 𝑂 = (exp‘((i · (2 · π)) / 3))
4 ax-icn 11134 . . . . . . . . . . . 12 i ∈ ℂ
5 2cn 12268 . . . . . . . . . . . . 13 2 ∈ ℂ
6 picn 26374 . . . . . . . . . . . . 13 π ∈ ℂ
75, 6mulcli 11188 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
84, 7mulcli 11188 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
9 3cn 12274 . . . . . . . . . . 11 3 ∈ ℂ
10 3ne0 12299 . . . . . . . . . . 11 3 ≠ 0
118, 9, 10divcli 11931 . . . . . . . . . 10 ((i · (2 · π)) / 3) ∈ ℂ
12 efcl 16055 . . . . . . . . . 10 (((i · (2 · π)) / 3) ∈ ℂ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
1311, 12ax-mp 5 . . . . . . . . 9 (exp‘((i · (2 · π)) / 3)) ∈ ℂ
143, 13eqeltri 2825 . . . . . . . 8 𝑂 ∈ ℂ
15 ax-1cn 11133 . . . . . . . . 9 1 ∈ ℂ
1615, 9, 10divcli 11931 . . . . . . . 8 (1 / 3) ∈ ℂ
17 cxpcl 26590 . . . . . . . 8 ((𝑂 ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (𝑂𝑐(1 / 3)) ∈ ℂ)
1814, 16, 17mp2an 692 . . . . . . 7 (𝑂𝑐(1 / 3)) ∈ ℂ
192, 18eqeltri 2825 . . . . . 6 𝑍 ∈ ℂ
20 efne0 16071 . . . . . . . . . . 11 (((i · (2 · π)) / 3) ∈ ℂ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
2111, 20ax-mp 5 . . . . . . . . . 10 (exp‘((i · (2 · π)) / 3)) ≠ 0
223, 21eqnetri 2996 . . . . . . . . 9 𝑂 ≠ 0
23 cxpne0 26593 . . . . . . . . 9 ((𝑂 ∈ ℂ ∧ 𝑂 ≠ 0 ∧ (1 / 3) ∈ ℂ) → (𝑂𝑐(1 / 3)) ≠ 0)
2414, 22, 16, 23mp3an 1463 . . . . . . . 8 (𝑂𝑐(1 / 3)) ≠ 0
252, 24eqnetri 2996 . . . . . . 7 𝑍 ≠ 0
2615, 19, 25divcli 11931 . . . . . 6 (1 / 𝑍) ∈ ℂ
2719, 26addcli 11187 . . . . 5 (𝑍 + (1 / 𝑍)) ∈ ℂ
281, 27eqeltri 2825 . . . 4 𝐴 ∈ ℂ
29 3nn0 12467 . . . 4 3 ∈ ℕ0
30 expcl 14051 . . . 4 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
3128, 29, 30mp2an 692 . . 3 (𝐴↑3) ∈ ℂ
329negcli 11497 . . . . 5 -3 ∈ ℂ
3332, 28mulcli 11188 . . . 4 (-3 · 𝐴) ∈ ℂ
3433, 15addcli 11187 . . 3 ((-3 · 𝐴) + 1) ∈ ℂ
3531, 34pm3.2i 470 . 2 ((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ)
36 binom3 14196 . . . 4 ((𝑍 ∈ ℂ ∧ (1 / 𝑍) ∈ ℂ) → ((𝑍 + (1 / 𝑍))↑3) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3))))
3719, 26, 36mp2an 692 . . 3 ((𝑍 + (1 / 𝑍))↑3) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
381oveq1i 7400 . . 3 (𝐴↑3) = ((𝑍 + (1 / 𝑍))↑3)
3933, 15negdii 11513 . . . 4 -((-3 · 𝐴) + 1) = (-(-3 · 𝐴) + -1)
4032, 28mulneg1i 11631 . . . . . 6 (--3 · 𝐴) = -(-3 · 𝐴)
4140oveq1i 7400 . . . . 5 ((--3 · 𝐴) + -1) = (-(-3 · 𝐴) + -1)
429negnegi 11499 . . . . . . 7 --3 = 3
4342oveq1i 7400 . . . . . 6 (--3 · 𝐴) = (3 · 𝐴)
4443oveq1i 7400 . . . . 5 ((--3 · 𝐴) + -1) = ((3 · 𝐴) + -1)
4541, 44eqtr3i 2755 . . . 4 (-(-3 · 𝐴) + -1) = ((3 · 𝐴) + -1)
46 6nn0 12470 . . . . . . . . 9 6 ∈ ℕ0
47 expcl 14051 . . . . . . . . 9 ((𝑍 ∈ ℂ ∧ 6 ∈ ℕ0) → (𝑍↑6) ∈ ℂ)
4819, 46, 47mp2an 692 . . . . . . . 8 (𝑍↑6) ∈ ℂ
49 expcl 14051 . . . . . . . . 9 ((𝑍 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑍↑3) ∈ ℂ)
5019, 29, 49mp2an 692 . . . . . . . 8 (𝑍↑3) ∈ ℂ
5148, 50addcomi 11372 . . . . . . 7 ((𝑍↑6) + (𝑍↑3)) = ((𝑍↑3) + (𝑍↑6))
523, 2cos9thpiminplylem4 33782 . . . . . . 7 ((𝑍↑6) + (𝑍↑3)) = -1
5313sqcli 14153 . . . . . . . . . . . . 13 ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ
5413, 21pm3.2i 470 . . . . . . . . . . . . 13 ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)
5515, 53, 543pm3.2i 1340 . . . . . . . . . . . 12 (1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0))
565, 15, 11adddiri 11194 . . . . . . . . . . . . . . . 16 ((2 + 1) · ((i · (2 · π)) / 3)) = ((2 · ((i · (2 · π)) / 3)) + (1 · ((i · (2 · π)) / 3)))
57 2p1e3 12330 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
5857oveq1i 7400 . . . . . . . . . . . . . . . . 17 ((2 + 1) · ((i · (2 · π)) / 3)) = (3 · ((i · (2 · π)) / 3))
598, 9, 10divcan2i 11932 . . . . . . . . . . . . . . . . 17 (3 · ((i · (2 · π)) / 3)) = (i · (2 · π))
6058, 59eqtri 2753 . . . . . . . . . . . . . . . 16 ((2 + 1) · ((i · (2 · π)) / 3)) = (i · (2 · π))
6111mullidi 11186 . . . . . . . . . . . . . . . . 17 (1 · ((i · (2 · π)) / 3)) = ((i · (2 · π)) / 3)
6261oveq2i 7401 . . . . . . . . . . . . . . . 16 ((2 · ((i · (2 · π)) / 3)) + (1 · ((i · (2 · π)) / 3))) = ((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))
6356, 60, 623eqtr3ri 2762 . . . . . . . . . . . . . . 15 ((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3)) = (i · (2 · π))
6463fveq2i 6864 . . . . . . . . . . . . . 14 (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = (exp‘(i · (2 · π)))
655, 11mulcli 11188 . . . . . . . . . . . . . . 15 (2 · ((i · (2 · π)) / 3)) ∈ ℂ
66 efadd 16067 . . . . . . . . . . . . . . 15 (((2 · ((i · (2 · π)) / 3)) ∈ ℂ ∧ ((i · (2 · π)) / 3) ∈ ℂ) → (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3))))
6765, 11, 66mp2an 692 . . . . . . . . . . . . . 14 (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3)))
6864, 67eqtr3i 2755 . . . . . . . . . . . . 13 (exp‘(i · (2 · π))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3)))
69 ef2pi 26393 . . . . . . . . . . . . 13 (exp‘(i · (2 · π))) = 1
70 2z 12572 . . . . . . . . . . . . . . 15 2 ∈ ℤ
71 efexp 16076 . . . . . . . . . . . . . . 15 ((((i · (2 · π)) / 3) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · ((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2))
7211, 70, 71mp2an 692 . . . . . . . . . . . . . 14 (exp‘(2 · ((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2)
7372oveq1i 7400 . . . . . . . . . . . . 13 ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3))) = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))
7468, 69, 733eqtr3i 2761 . . . . . . . . . . . 12 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))
75 divmul3 11849 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)) → ((1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2) ↔ 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))))
7675biimpar 477 . . . . . . . . . . . 12 (((1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)) ∧ 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))) → (1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2))
7755, 74, 76mp2an 692 . . . . . . . . . . 11 (1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2)
783oveq2i 7401 . . . . . . . . . . 11 (1 / 𝑂) = (1 / (exp‘((i · (2 · π)) / 3)))
793oveq1i 7400 . . . . . . . . . . 11 (𝑂↑2) = ((exp‘((i · (2 · π)) / 3))↑2)
8077, 78, 793eqtr4ri 2764 . . . . . . . . . 10 (𝑂↑2) = (1 / 𝑂)
812oveq1i 7400 . . . . . . . . . . . 12 (𝑍↑3) = ((𝑂𝑐(1 / 3))↑3)
82 3nn 12272 . . . . . . . . . . . . 13 3 ∈ ℕ
83 cxproot 26606 . . . . . . . . . . . . 13 ((𝑂 ∈ ℂ ∧ 3 ∈ ℕ) → ((𝑂𝑐(1 / 3))↑3) = 𝑂)
8414, 82, 83mp2an 692 . . . . . . . . . . . 12 ((𝑂𝑐(1 / 3))↑3) = 𝑂
8581, 84eqtr2i 2754 . . . . . . . . . . 11 𝑂 = (𝑍↑3)
8685oveq1i 7400 . . . . . . . . . 10 (𝑂↑2) = ((𝑍↑3)↑2)
8785oveq2i 7401 . . . . . . . . . 10 (1 / 𝑂) = (1 / (𝑍↑3))
8880, 86, 873eqtr3i 2761 . . . . . . . . 9 ((𝑍↑3)↑2) = (1 / (𝑍↑3))
89 3t2e6 12354 . . . . . . . . . . 11 (3 · 2) = 6
9089oveq2i 7401 . . . . . . . . . 10 (𝑍↑(3 · 2)) = (𝑍↑6)
91 2nn0 12466 . . . . . . . . . . 11 2 ∈ ℕ0
92 expmul 14079 . . . . . . . . . . 11 ((𝑍 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (𝑍↑(3 · 2)) = ((𝑍↑3)↑2))
9319, 29, 91, 92mp3an 1463 . . . . . . . . . 10 (𝑍↑(3 · 2)) = ((𝑍↑3)↑2)
9490, 93eqtr3i 2755 . . . . . . . . 9 (𝑍↑6) = ((𝑍↑3)↑2)
95 3z 12573 . . . . . . . . . 10 3 ∈ ℤ
96 exprec 14075 . . . . . . . . . 10 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ∧ 3 ∈ ℤ) → ((1 / 𝑍)↑3) = (1 / (𝑍↑3)))
9719, 25, 95, 96mp3an 1463 . . . . . . . . 9 ((1 / 𝑍)↑3) = (1 / (𝑍↑3))
9888, 94, 973eqtr4i 2763 . . . . . . . 8 (𝑍↑6) = ((1 / 𝑍)↑3)
9998oveq2i 7401 . . . . . . 7 ((𝑍↑3) + (𝑍↑6)) = ((𝑍↑3) + ((1 / 𝑍)↑3))
10051, 52, 993eqtr3i 2761 . . . . . 6 -1 = ((𝑍↑3) + ((1 / 𝑍)↑3))
101 sqdivid 14094 . . . . . . . . . . . 12 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) → ((𝑍↑2) / 𝑍) = 𝑍)
10219, 25, 101mp2an 692 . . . . . . . . . . 11 ((𝑍↑2) / 𝑍) = 𝑍
10319sqcli 14153 . . . . . . . . . . . 12 (𝑍↑2) ∈ ℂ
104103, 19, 25divreci 11934 . . . . . . . . . . 11 ((𝑍↑2) / 𝑍) = ((𝑍↑2) · (1 / 𝑍))
105102, 104eqtr3i 2755 . . . . . . . . . 10 𝑍 = ((𝑍↑2) · (1 / 𝑍))
10615, 5negsubi 11507 . . . . . . . . . . . . . 14 (1 + -2) = (1 − 2)
1075, 15negsubdi2i 11515 . . . . . . . . . . . . . 14 -(2 − 1) = (1 − 2)
108 2m1e1 12314 . . . . . . . . . . . . . . 15 (2 − 1) = 1
109108negeqi 11421 . . . . . . . . . . . . . 14 -(2 − 1) = -1
110106, 107, 1093eqtr2i 2759 . . . . . . . . . . . . 13 (1 + -2) = -1
111110oveq2i 7401 . . . . . . . . . . . 12 (𝑍↑(1 + -2)) = (𝑍↑-1)
112 1z 12570 . . . . . . . . . . . . 13 1 ∈ ℤ
11391nn0negzi 12579 . . . . . . . . . . . . 13 -2 ∈ ℤ
114 expaddz 14078 . . . . . . . . . . . . 13 (((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (1 ∈ ℤ ∧ -2 ∈ ℤ)) → (𝑍↑(1 + -2)) = ((𝑍↑1) · (𝑍↑-2)))
11519, 25, 112, 113, 114mp4an 693 . . . . . . . . . . . 12 (𝑍↑(1 + -2)) = ((𝑍↑1) · (𝑍↑-2))
116 expn1 14043 . . . . . . . . . . . . 13 (𝑍 ∈ ℂ → (𝑍↑-1) = (1 / 𝑍))
11719, 116ax-mp 5 . . . . . . . . . . . 12 (𝑍↑-1) = (1 / 𝑍)
118111, 115, 1173eqtr3i 2761 . . . . . . . . . . 11 ((𝑍↑1) · (𝑍↑-2)) = (1 / 𝑍)
119 exp1 14039 . . . . . . . . . . . . 13 (𝑍 ∈ ℂ → (𝑍↑1) = 𝑍)
12019, 119ax-mp 5 . . . . . . . . . . . 12 (𝑍↑1) = 𝑍
121 expnegz 14068 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ∧ 2 ∈ ℤ) → (𝑍↑-2) = (1 / (𝑍↑2)))
12219, 25, 70, 121mp3an 1463 . . . . . . . . . . . . 13 (𝑍↑-2) = (1 / (𝑍↑2))
12319, 25sqrecii 14155 . . . . . . . . . . . . 13 ((1 / 𝑍)↑2) = (1 / (𝑍↑2))
124122, 123eqtr4i 2756 . . . . . . . . . . . 12 (𝑍↑-2) = ((1 / 𝑍)↑2)
125120, 124oveq12i 7402 . . . . . . . . . . 11 ((𝑍↑1) · (𝑍↑-2)) = (𝑍 · ((1 / 𝑍)↑2))
126118, 125eqtr3i 2755 . . . . . . . . . 10 (1 / 𝑍) = (𝑍 · ((1 / 𝑍)↑2))
127105, 126oveq12i 7402 . . . . . . . . 9 (𝑍 + (1 / 𝑍)) = (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))
1281, 127eqtri 2753 . . . . . . . 8 𝐴 = (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))
129128oveq2i 7401 . . . . . . 7 (3 · 𝐴) = (3 · (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2))))
130103, 26mulcli 11188 . . . . . . . 8 ((𝑍↑2) · (1 / 𝑍)) ∈ ℂ
13126sqcli 14153 . . . . . . . . 9 ((1 / 𝑍)↑2) ∈ ℂ
13219, 131mulcli 11188 . . . . . . . 8 (𝑍 · ((1 / 𝑍)↑2)) ∈ ℂ
1339, 130, 132adddii 11193 . . . . . . 7 (3 · (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))) = ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))
134129, 133eqtri 2753 . . . . . 6 (3 · 𝐴) = ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))
135100, 134oveq12i 7402 . . . . 5 (-1 + (3 · 𝐴)) = (((𝑍↑3) + ((1 / 𝑍)↑3)) + ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2)))))
13615negcli 11497 . . . . . 6 -1 ∈ ℂ
1379, 28mulcli 11188 . . . . . 6 (3 · 𝐴) ∈ ℂ
138136, 137addcomi 11372 . . . . 5 (-1 + (3 · 𝐴)) = ((3 · 𝐴) + -1)
139 expcl 14051 . . . . . . 7 (((1 / 𝑍) ∈ ℂ ∧ 3 ∈ ℕ0) → ((1 / 𝑍)↑3) ∈ ℂ)
14026, 29, 139mp2an 692 . . . . . 6 ((1 / 𝑍)↑3) ∈ ℂ
1419, 130mulcli 11188 . . . . . 6 (3 · ((𝑍↑2) · (1 / 𝑍))) ∈ ℂ
1429, 132mulcli 11188 . . . . . 6 (3 · (𝑍 · ((1 / 𝑍)↑2))) ∈ ℂ
14350, 140, 141, 142add42i 11407 . . . . 5 (((𝑍↑3) + ((1 / 𝑍)↑3)) + ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
144135, 138, 1433eqtr3i 2761 . . . 4 ((3 · 𝐴) + -1) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
14539, 45, 1443eqtri 2757 . . 3 -((-3 · 𝐴) + 1) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
14637, 38, 1453eqtr4i 2763 . 2 (𝐴↑3) = -((-3 · 𝐴) + 1)
147 addeq0 11608 . . 3 (((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ) → (((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0 ↔ (𝐴↑3) = -((-3 · 𝐴) + 1)))
148147biimpar 477 . 2 ((((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ) ∧ (𝐴↑3) = -((-3 · 𝐴) + 1)) → ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0)
14935, 146, 148mp2an 692 1 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  6c6 12252  0cn0 12449  cz 12536  cexp 14033  expce 16034  πcpi 16039  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473
This theorem is referenced by:  cos9thpiminply  33785
  Copyright terms: Public domain W3C validator