Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminplylem5 Structured version   Visualization version   GIF version

Theorem cos9thpiminplylem5 33799
Description: The constructed complex number 𝐴 is a root of the polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)). (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
cos9thpiminplylem3.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminplylem4.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminplylem5.3 𝐴 = (𝑍 + (1 / 𝑍))
Assertion
Ref Expression
cos9thpiminplylem5 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0

Proof of Theorem cos9thpiminplylem5
StepHypRef Expression
1 cos9thpiminplylem5.3 . . . . 5 𝐴 = (𝑍 + (1 / 𝑍))
2 cos9thpiminplylem4.2 . . . . . . 7 𝑍 = (𝑂𝑐(1 / 3))
3 cos9thpiminplylem3.1 . . . . . . . . 9 𝑂 = (exp‘((i · (2 · π)) / 3))
4 ax-icn 11065 . . . . . . . . . . . 12 i ∈ ℂ
5 2cn 12200 . . . . . . . . . . . . 13 2 ∈ ℂ
6 picn 26394 . . . . . . . . . . . . 13 π ∈ ℂ
75, 6mulcli 11119 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
84, 7mulcli 11119 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
9 3cn 12206 . . . . . . . . . . 11 3 ∈ ℂ
10 3ne0 12231 . . . . . . . . . . 11 3 ≠ 0
118, 9, 10divcli 11863 . . . . . . . . . 10 ((i · (2 · π)) / 3) ∈ ℂ
12 efcl 15989 . . . . . . . . . 10 (((i · (2 · π)) / 3) ∈ ℂ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
1311, 12ax-mp 5 . . . . . . . . 9 (exp‘((i · (2 · π)) / 3)) ∈ ℂ
143, 13eqeltri 2827 . . . . . . . 8 𝑂 ∈ ℂ
15 ax-1cn 11064 . . . . . . . . 9 1 ∈ ℂ
1615, 9, 10divcli 11863 . . . . . . . 8 (1 / 3) ∈ ℂ
17 cxpcl 26610 . . . . . . . 8 ((𝑂 ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (𝑂𝑐(1 / 3)) ∈ ℂ)
1814, 16, 17mp2an 692 . . . . . . 7 (𝑂𝑐(1 / 3)) ∈ ℂ
192, 18eqeltri 2827 . . . . . 6 𝑍 ∈ ℂ
20 efne0 16005 . . . . . . . . . . 11 (((i · (2 · π)) / 3) ∈ ℂ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
2111, 20ax-mp 5 . . . . . . . . . 10 (exp‘((i · (2 · π)) / 3)) ≠ 0
223, 21eqnetri 2998 . . . . . . . . 9 𝑂 ≠ 0
23 cxpne0 26613 . . . . . . . . 9 ((𝑂 ∈ ℂ ∧ 𝑂 ≠ 0 ∧ (1 / 3) ∈ ℂ) → (𝑂𝑐(1 / 3)) ≠ 0)
2414, 22, 16, 23mp3an 1463 . . . . . . . 8 (𝑂𝑐(1 / 3)) ≠ 0
252, 24eqnetri 2998 . . . . . . 7 𝑍 ≠ 0
2615, 19, 25divcli 11863 . . . . . 6 (1 / 𝑍) ∈ ℂ
2719, 26addcli 11118 . . . . 5 (𝑍 + (1 / 𝑍)) ∈ ℂ
281, 27eqeltri 2827 . . . 4 𝐴 ∈ ℂ
29 3nn0 12399 . . . 4 3 ∈ ℕ0
30 expcl 13986 . . . 4 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
3128, 29, 30mp2an 692 . . 3 (𝐴↑3) ∈ ℂ
329negcli 11429 . . . . 5 -3 ∈ ℂ
3332, 28mulcli 11119 . . . 4 (-3 · 𝐴) ∈ ℂ
3433, 15addcli 11118 . . 3 ((-3 · 𝐴) + 1) ∈ ℂ
3531, 34pm3.2i 470 . 2 ((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ)
36 binom3 14131 . . . 4 ((𝑍 ∈ ℂ ∧ (1 / 𝑍) ∈ ℂ) → ((𝑍 + (1 / 𝑍))↑3) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3))))
3719, 26, 36mp2an 692 . . 3 ((𝑍 + (1 / 𝑍))↑3) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
381oveq1i 7356 . . 3 (𝐴↑3) = ((𝑍 + (1 / 𝑍))↑3)
3933, 15negdii 11445 . . . 4 -((-3 · 𝐴) + 1) = (-(-3 · 𝐴) + -1)
4032, 28mulneg1i 11563 . . . . . 6 (--3 · 𝐴) = -(-3 · 𝐴)
4140oveq1i 7356 . . . . 5 ((--3 · 𝐴) + -1) = (-(-3 · 𝐴) + -1)
429negnegi 11431 . . . . . . 7 --3 = 3
4342oveq1i 7356 . . . . . 6 (--3 · 𝐴) = (3 · 𝐴)
4443oveq1i 7356 . . . . 5 ((--3 · 𝐴) + -1) = ((3 · 𝐴) + -1)
4541, 44eqtr3i 2756 . . . 4 (-(-3 · 𝐴) + -1) = ((3 · 𝐴) + -1)
46 6nn0 12402 . . . . . . . . 9 6 ∈ ℕ0
47 expcl 13986 . . . . . . . . 9 ((𝑍 ∈ ℂ ∧ 6 ∈ ℕ0) → (𝑍↑6) ∈ ℂ)
4819, 46, 47mp2an 692 . . . . . . . 8 (𝑍↑6) ∈ ℂ
49 expcl 13986 . . . . . . . . 9 ((𝑍 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑍↑3) ∈ ℂ)
5019, 29, 49mp2an 692 . . . . . . . 8 (𝑍↑3) ∈ ℂ
5148, 50addcomi 11304 . . . . . . 7 ((𝑍↑6) + (𝑍↑3)) = ((𝑍↑3) + (𝑍↑6))
523, 2cos9thpiminplylem4 33798 . . . . . . 7 ((𝑍↑6) + (𝑍↑3)) = -1
5313sqcli 14088 . . . . . . . . . . . . 13 ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ
5413, 21pm3.2i 470 . . . . . . . . . . . . 13 ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)
5515, 53, 543pm3.2i 1340 . . . . . . . . . . . 12 (1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0))
565, 15, 11adddiri 11125 . . . . . . . . . . . . . . . 16 ((2 + 1) · ((i · (2 · π)) / 3)) = ((2 · ((i · (2 · π)) / 3)) + (1 · ((i · (2 · π)) / 3)))
57 2p1e3 12262 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
5857oveq1i 7356 . . . . . . . . . . . . . . . . 17 ((2 + 1) · ((i · (2 · π)) / 3)) = (3 · ((i · (2 · π)) / 3))
598, 9, 10divcan2i 11864 . . . . . . . . . . . . . . . . 17 (3 · ((i · (2 · π)) / 3)) = (i · (2 · π))
6058, 59eqtri 2754 . . . . . . . . . . . . . . . 16 ((2 + 1) · ((i · (2 · π)) / 3)) = (i · (2 · π))
6111mullidi 11117 . . . . . . . . . . . . . . . . 17 (1 · ((i · (2 · π)) / 3)) = ((i · (2 · π)) / 3)
6261oveq2i 7357 . . . . . . . . . . . . . . . 16 ((2 · ((i · (2 · π)) / 3)) + (1 · ((i · (2 · π)) / 3))) = ((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))
6356, 60, 623eqtr3ri 2763 . . . . . . . . . . . . . . 15 ((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3)) = (i · (2 · π))
6463fveq2i 6825 . . . . . . . . . . . . . 14 (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = (exp‘(i · (2 · π)))
655, 11mulcli 11119 . . . . . . . . . . . . . . 15 (2 · ((i · (2 · π)) / 3)) ∈ ℂ
66 efadd 16001 . . . . . . . . . . . . . . 15 (((2 · ((i · (2 · π)) / 3)) ∈ ℂ ∧ ((i · (2 · π)) / 3) ∈ ℂ) → (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3))))
6765, 11, 66mp2an 692 . . . . . . . . . . . . . 14 (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3)))
6864, 67eqtr3i 2756 . . . . . . . . . . . . 13 (exp‘(i · (2 · π))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3)))
69 ef2pi 26413 . . . . . . . . . . . . 13 (exp‘(i · (2 · π))) = 1
70 2z 12504 . . . . . . . . . . . . . . 15 2 ∈ ℤ
71 efexp 16010 . . . . . . . . . . . . . . 15 ((((i · (2 · π)) / 3) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · ((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2))
7211, 70, 71mp2an 692 . . . . . . . . . . . . . 14 (exp‘(2 · ((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2)
7372oveq1i 7356 . . . . . . . . . . . . 13 ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3))) = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))
7468, 69, 733eqtr3i 2762 . . . . . . . . . . . 12 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))
75 divmul3 11781 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)) → ((1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2) ↔ 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))))
7675biimpar 477 . . . . . . . . . . . 12 (((1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)) ∧ 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))) → (1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2))
7755, 74, 76mp2an 692 . . . . . . . . . . 11 (1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2)
783oveq2i 7357 . . . . . . . . . . 11 (1 / 𝑂) = (1 / (exp‘((i · (2 · π)) / 3)))
793oveq1i 7356 . . . . . . . . . . 11 (𝑂↑2) = ((exp‘((i · (2 · π)) / 3))↑2)
8077, 78, 793eqtr4ri 2765 . . . . . . . . . 10 (𝑂↑2) = (1 / 𝑂)
812oveq1i 7356 . . . . . . . . . . . 12 (𝑍↑3) = ((𝑂𝑐(1 / 3))↑3)
82 3nn 12204 . . . . . . . . . . . . 13 3 ∈ ℕ
83 cxproot 26626 . . . . . . . . . . . . 13 ((𝑂 ∈ ℂ ∧ 3 ∈ ℕ) → ((𝑂𝑐(1 / 3))↑3) = 𝑂)
8414, 82, 83mp2an 692 . . . . . . . . . . . 12 ((𝑂𝑐(1 / 3))↑3) = 𝑂
8581, 84eqtr2i 2755 . . . . . . . . . . 11 𝑂 = (𝑍↑3)
8685oveq1i 7356 . . . . . . . . . 10 (𝑂↑2) = ((𝑍↑3)↑2)
8785oveq2i 7357 . . . . . . . . . 10 (1 / 𝑂) = (1 / (𝑍↑3))
8880, 86, 873eqtr3i 2762 . . . . . . . . 9 ((𝑍↑3)↑2) = (1 / (𝑍↑3))
89 3t2e6 12286 . . . . . . . . . . 11 (3 · 2) = 6
9089oveq2i 7357 . . . . . . . . . 10 (𝑍↑(3 · 2)) = (𝑍↑6)
91 2nn0 12398 . . . . . . . . . . 11 2 ∈ ℕ0
92 expmul 14014 . . . . . . . . . . 11 ((𝑍 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (𝑍↑(3 · 2)) = ((𝑍↑3)↑2))
9319, 29, 91, 92mp3an 1463 . . . . . . . . . 10 (𝑍↑(3 · 2)) = ((𝑍↑3)↑2)
9490, 93eqtr3i 2756 . . . . . . . . 9 (𝑍↑6) = ((𝑍↑3)↑2)
95 3z 12505 . . . . . . . . . 10 3 ∈ ℤ
96 exprec 14010 . . . . . . . . . 10 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ∧ 3 ∈ ℤ) → ((1 / 𝑍)↑3) = (1 / (𝑍↑3)))
9719, 25, 95, 96mp3an 1463 . . . . . . . . 9 ((1 / 𝑍)↑3) = (1 / (𝑍↑3))
9888, 94, 973eqtr4i 2764 . . . . . . . 8 (𝑍↑6) = ((1 / 𝑍)↑3)
9998oveq2i 7357 . . . . . . 7 ((𝑍↑3) + (𝑍↑6)) = ((𝑍↑3) + ((1 / 𝑍)↑3))
10051, 52, 993eqtr3i 2762 . . . . . 6 -1 = ((𝑍↑3) + ((1 / 𝑍)↑3))
101 sqdivid 14029 . . . . . . . . . . . 12 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) → ((𝑍↑2) / 𝑍) = 𝑍)
10219, 25, 101mp2an 692 . . . . . . . . . . 11 ((𝑍↑2) / 𝑍) = 𝑍
10319sqcli 14088 . . . . . . . . . . . 12 (𝑍↑2) ∈ ℂ
104103, 19, 25divreci 11866 . . . . . . . . . . 11 ((𝑍↑2) / 𝑍) = ((𝑍↑2) · (1 / 𝑍))
105102, 104eqtr3i 2756 . . . . . . . . . 10 𝑍 = ((𝑍↑2) · (1 / 𝑍))
10615, 5negsubi 11439 . . . . . . . . . . . . . 14 (1 + -2) = (1 − 2)
1075, 15negsubdi2i 11447 . . . . . . . . . . . . . 14 -(2 − 1) = (1 − 2)
108 2m1e1 12246 . . . . . . . . . . . . . . 15 (2 − 1) = 1
109108negeqi 11353 . . . . . . . . . . . . . 14 -(2 − 1) = -1
110106, 107, 1093eqtr2i 2760 . . . . . . . . . . . . 13 (1 + -2) = -1
111110oveq2i 7357 . . . . . . . . . . . 12 (𝑍↑(1 + -2)) = (𝑍↑-1)
112 1z 12502 . . . . . . . . . . . . 13 1 ∈ ℤ
11391nn0negzi 12511 . . . . . . . . . . . . 13 -2 ∈ ℤ
114 expaddz 14013 . . . . . . . . . . . . 13 (((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (1 ∈ ℤ ∧ -2 ∈ ℤ)) → (𝑍↑(1 + -2)) = ((𝑍↑1) · (𝑍↑-2)))
11519, 25, 112, 113, 114mp4an 693 . . . . . . . . . . . 12 (𝑍↑(1 + -2)) = ((𝑍↑1) · (𝑍↑-2))
116 expn1 13978 . . . . . . . . . . . . 13 (𝑍 ∈ ℂ → (𝑍↑-1) = (1 / 𝑍))
11719, 116ax-mp 5 . . . . . . . . . . . 12 (𝑍↑-1) = (1 / 𝑍)
118111, 115, 1173eqtr3i 2762 . . . . . . . . . . 11 ((𝑍↑1) · (𝑍↑-2)) = (1 / 𝑍)
119 exp1 13974 . . . . . . . . . . . . 13 (𝑍 ∈ ℂ → (𝑍↑1) = 𝑍)
12019, 119ax-mp 5 . . . . . . . . . . . 12 (𝑍↑1) = 𝑍
121 expnegz 14003 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ∧ 2 ∈ ℤ) → (𝑍↑-2) = (1 / (𝑍↑2)))
12219, 25, 70, 121mp3an 1463 . . . . . . . . . . . . 13 (𝑍↑-2) = (1 / (𝑍↑2))
12319, 25sqrecii 14090 . . . . . . . . . . . . 13 ((1 / 𝑍)↑2) = (1 / (𝑍↑2))
124122, 123eqtr4i 2757 . . . . . . . . . . . 12 (𝑍↑-2) = ((1 / 𝑍)↑2)
125120, 124oveq12i 7358 . . . . . . . . . . 11 ((𝑍↑1) · (𝑍↑-2)) = (𝑍 · ((1 / 𝑍)↑2))
126118, 125eqtr3i 2756 . . . . . . . . . 10 (1 / 𝑍) = (𝑍 · ((1 / 𝑍)↑2))
127105, 126oveq12i 7358 . . . . . . . . 9 (𝑍 + (1 / 𝑍)) = (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))
1281, 127eqtri 2754 . . . . . . . 8 𝐴 = (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))
129128oveq2i 7357 . . . . . . 7 (3 · 𝐴) = (3 · (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2))))
130103, 26mulcli 11119 . . . . . . . 8 ((𝑍↑2) · (1 / 𝑍)) ∈ ℂ
13126sqcli 14088 . . . . . . . . 9 ((1 / 𝑍)↑2) ∈ ℂ
13219, 131mulcli 11119 . . . . . . . 8 (𝑍 · ((1 / 𝑍)↑2)) ∈ ℂ
1339, 130, 132adddii 11124 . . . . . . 7 (3 · (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))) = ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))
134129, 133eqtri 2754 . . . . . 6 (3 · 𝐴) = ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))
135100, 134oveq12i 7358 . . . . 5 (-1 + (3 · 𝐴)) = (((𝑍↑3) + ((1 / 𝑍)↑3)) + ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2)))))
13615negcli 11429 . . . . . 6 -1 ∈ ℂ
1379, 28mulcli 11119 . . . . . 6 (3 · 𝐴) ∈ ℂ
138136, 137addcomi 11304 . . . . 5 (-1 + (3 · 𝐴)) = ((3 · 𝐴) + -1)
139 expcl 13986 . . . . . . 7 (((1 / 𝑍) ∈ ℂ ∧ 3 ∈ ℕ0) → ((1 / 𝑍)↑3) ∈ ℂ)
14026, 29, 139mp2an 692 . . . . . 6 ((1 / 𝑍)↑3) ∈ ℂ
1419, 130mulcli 11119 . . . . . 6 (3 · ((𝑍↑2) · (1 / 𝑍))) ∈ ℂ
1429, 132mulcli 11119 . . . . . 6 (3 · (𝑍 · ((1 / 𝑍)↑2))) ∈ ℂ
14350, 140, 141, 142add42i 11339 . . . . 5 (((𝑍↑3) + ((1 / 𝑍)↑3)) + ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
144135, 138, 1433eqtr3i 2762 . . . 4 ((3 · 𝐴) + -1) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
14539, 45, 1443eqtri 2758 . . 3 -((-3 · 𝐴) + 1) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
14637, 38, 1453eqtr4i 2764 . 2 (𝐴↑3) = -((-3 · 𝐴) + 1)
147 addeq0 11540 . . 3 (((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ) → (((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0 ↔ (𝐴↑3) = -((-3 · 𝐴) + 1)))
148147biimpar 477 . 2 ((((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ) ∧ (𝐴↑3) = -((-3 · 𝐴) + 1)) → ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0)
14935, 146, 148mp2an 692 1 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  6c6 12184  0cn0 12381  cz 12468  cexp 13968  expce 15968  πcpi 15973  𝑐ccxp 26491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493
This theorem is referenced by:  cos9thpiminply  33801
  Copyright terms: Public domain W3C validator