Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminplylem5 Structured version   Visualization version   GIF version

Theorem cos9thpiminplylem5 33769
Description: The constructed complex number 𝐴 is a root of the polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)). (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
cos9thpiminplylem3.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminplylem4.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminplylem5.3 𝐴 = (𝑍 + (1 / 𝑍))
Assertion
Ref Expression
cos9thpiminplylem5 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0

Proof of Theorem cos9thpiminplylem5
StepHypRef Expression
1 cos9thpiminplylem5.3 . . . . 5 𝐴 = (𝑍 + (1 / 𝑍))
2 cos9thpiminplylem4.2 . . . . . . 7 𝑍 = (𝑂𝑐(1 / 3))
3 cos9thpiminplylem3.1 . . . . . . . . 9 𝑂 = (exp‘((i · (2 · π)) / 3))
4 ax-icn 11103 . . . . . . . . . . . 12 i ∈ ℂ
5 2cn 12237 . . . . . . . . . . . . 13 2 ∈ ℂ
6 picn 26400 . . . . . . . . . . . . 13 π ∈ ℂ
75, 6mulcli 11157 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
84, 7mulcli 11157 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
9 3cn 12243 . . . . . . . . . . 11 3 ∈ ℂ
10 3ne0 12268 . . . . . . . . . . 11 3 ≠ 0
118, 9, 10divcli 11900 . . . . . . . . . 10 ((i · (2 · π)) / 3) ∈ ℂ
12 efcl 16024 . . . . . . . . . 10 (((i · (2 · π)) / 3) ∈ ℂ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
1311, 12ax-mp 5 . . . . . . . . 9 (exp‘((i · (2 · π)) / 3)) ∈ ℂ
143, 13eqeltri 2824 . . . . . . . 8 𝑂 ∈ ℂ
15 ax-1cn 11102 . . . . . . . . 9 1 ∈ ℂ
1615, 9, 10divcli 11900 . . . . . . . 8 (1 / 3) ∈ ℂ
17 cxpcl 26616 . . . . . . . 8 ((𝑂 ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (𝑂𝑐(1 / 3)) ∈ ℂ)
1814, 16, 17mp2an 692 . . . . . . 7 (𝑂𝑐(1 / 3)) ∈ ℂ
192, 18eqeltri 2824 . . . . . 6 𝑍 ∈ ℂ
20 efne0 16040 . . . . . . . . . . 11 (((i · (2 · π)) / 3) ∈ ℂ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
2111, 20ax-mp 5 . . . . . . . . . 10 (exp‘((i · (2 · π)) / 3)) ≠ 0
223, 21eqnetri 2995 . . . . . . . . 9 𝑂 ≠ 0
23 cxpne0 26619 . . . . . . . . 9 ((𝑂 ∈ ℂ ∧ 𝑂 ≠ 0 ∧ (1 / 3) ∈ ℂ) → (𝑂𝑐(1 / 3)) ≠ 0)
2414, 22, 16, 23mp3an 1463 . . . . . . . 8 (𝑂𝑐(1 / 3)) ≠ 0
252, 24eqnetri 2995 . . . . . . 7 𝑍 ≠ 0
2615, 19, 25divcli 11900 . . . . . 6 (1 / 𝑍) ∈ ℂ
2719, 26addcli 11156 . . . . 5 (𝑍 + (1 / 𝑍)) ∈ ℂ
281, 27eqeltri 2824 . . . 4 𝐴 ∈ ℂ
29 3nn0 12436 . . . 4 3 ∈ ℕ0
30 expcl 14020 . . . 4 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
3128, 29, 30mp2an 692 . . 3 (𝐴↑3) ∈ ℂ
329negcli 11466 . . . . 5 -3 ∈ ℂ
3332, 28mulcli 11157 . . . 4 (-3 · 𝐴) ∈ ℂ
3433, 15addcli 11156 . . 3 ((-3 · 𝐴) + 1) ∈ ℂ
3531, 34pm3.2i 470 . 2 ((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ)
36 binom3 14165 . . . 4 ((𝑍 ∈ ℂ ∧ (1 / 𝑍) ∈ ℂ) → ((𝑍 + (1 / 𝑍))↑3) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3))))
3719, 26, 36mp2an 692 . . 3 ((𝑍 + (1 / 𝑍))↑3) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
381oveq1i 7379 . . 3 (𝐴↑3) = ((𝑍 + (1 / 𝑍))↑3)
3933, 15negdii 11482 . . . 4 -((-3 · 𝐴) + 1) = (-(-3 · 𝐴) + -1)
4032, 28mulneg1i 11600 . . . . . 6 (--3 · 𝐴) = -(-3 · 𝐴)
4140oveq1i 7379 . . . . 5 ((--3 · 𝐴) + -1) = (-(-3 · 𝐴) + -1)
429negnegi 11468 . . . . . . 7 --3 = 3
4342oveq1i 7379 . . . . . 6 (--3 · 𝐴) = (3 · 𝐴)
4443oveq1i 7379 . . . . 5 ((--3 · 𝐴) + -1) = ((3 · 𝐴) + -1)
4541, 44eqtr3i 2754 . . . 4 (-(-3 · 𝐴) + -1) = ((3 · 𝐴) + -1)
46 6nn0 12439 . . . . . . . . 9 6 ∈ ℕ0
47 expcl 14020 . . . . . . . . 9 ((𝑍 ∈ ℂ ∧ 6 ∈ ℕ0) → (𝑍↑6) ∈ ℂ)
4819, 46, 47mp2an 692 . . . . . . . 8 (𝑍↑6) ∈ ℂ
49 expcl 14020 . . . . . . . . 9 ((𝑍 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑍↑3) ∈ ℂ)
5019, 29, 49mp2an 692 . . . . . . . 8 (𝑍↑3) ∈ ℂ
5148, 50addcomi 11341 . . . . . . 7 ((𝑍↑6) + (𝑍↑3)) = ((𝑍↑3) + (𝑍↑6))
523, 2cos9thpiminplylem4 33768 . . . . . . 7 ((𝑍↑6) + (𝑍↑3)) = -1
5313sqcli 14122 . . . . . . . . . . . . 13 ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ
5413, 21pm3.2i 470 . . . . . . . . . . . . 13 ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)
5515, 53, 543pm3.2i 1340 . . . . . . . . . . . 12 (1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0))
565, 15, 11adddiri 11163 . . . . . . . . . . . . . . . 16 ((2 + 1) · ((i · (2 · π)) / 3)) = ((2 · ((i · (2 · π)) / 3)) + (1 · ((i · (2 · π)) / 3)))
57 2p1e3 12299 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
5857oveq1i 7379 . . . . . . . . . . . . . . . . 17 ((2 + 1) · ((i · (2 · π)) / 3)) = (3 · ((i · (2 · π)) / 3))
598, 9, 10divcan2i 11901 . . . . . . . . . . . . . . . . 17 (3 · ((i · (2 · π)) / 3)) = (i · (2 · π))
6058, 59eqtri 2752 . . . . . . . . . . . . . . . 16 ((2 + 1) · ((i · (2 · π)) / 3)) = (i · (2 · π))
6111mullidi 11155 . . . . . . . . . . . . . . . . 17 (1 · ((i · (2 · π)) / 3)) = ((i · (2 · π)) / 3)
6261oveq2i 7380 . . . . . . . . . . . . . . . 16 ((2 · ((i · (2 · π)) / 3)) + (1 · ((i · (2 · π)) / 3))) = ((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))
6356, 60, 623eqtr3ri 2761 . . . . . . . . . . . . . . 15 ((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3)) = (i · (2 · π))
6463fveq2i 6843 . . . . . . . . . . . . . 14 (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = (exp‘(i · (2 · π)))
655, 11mulcli 11157 . . . . . . . . . . . . . . 15 (2 · ((i · (2 · π)) / 3)) ∈ ℂ
66 efadd 16036 . . . . . . . . . . . . . . 15 (((2 · ((i · (2 · π)) / 3)) ∈ ℂ ∧ ((i · (2 · π)) / 3) ∈ ℂ) → (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3))))
6765, 11, 66mp2an 692 . . . . . . . . . . . . . 14 (exp‘((2 · ((i · (2 · π)) / 3)) + ((i · (2 · π)) / 3))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3)))
6864, 67eqtr3i 2754 . . . . . . . . . . . . 13 (exp‘(i · (2 · π))) = ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3)))
69 ef2pi 26419 . . . . . . . . . . . . 13 (exp‘(i · (2 · π))) = 1
70 2z 12541 . . . . . . . . . . . . . . 15 2 ∈ ℤ
71 efexp 16045 . . . . . . . . . . . . . . 15 ((((i · (2 · π)) / 3) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · ((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2))
7211, 70, 71mp2an 692 . . . . . . . . . . . . . 14 (exp‘(2 · ((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2)
7372oveq1i 7379 . . . . . . . . . . . . 13 ((exp‘(2 · ((i · (2 · π)) / 3))) · (exp‘((i · (2 · π)) / 3))) = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))
7468, 69, 733eqtr3i 2760 . . . . . . . . . . . 12 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))
75 divmul3 11818 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)) → ((1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2) ↔ 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))))
7675biimpar 477 . . . . . . . . . . . 12 (((1 ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3))↑2) ∈ ℂ ∧ ((exp‘((i · (2 · π)) / 3)) ∈ ℂ ∧ (exp‘((i · (2 · π)) / 3)) ≠ 0)) ∧ 1 = (((exp‘((i · (2 · π)) / 3))↑2) · (exp‘((i · (2 · π)) / 3)))) → (1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2))
7755, 74, 76mp2an 692 . . . . . . . . . . 11 (1 / (exp‘((i · (2 · π)) / 3))) = ((exp‘((i · (2 · π)) / 3))↑2)
783oveq2i 7380 . . . . . . . . . . 11 (1 / 𝑂) = (1 / (exp‘((i · (2 · π)) / 3)))
793oveq1i 7379 . . . . . . . . . . 11 (𝑂↑2) = ((exp‘((i · (2 · π)) / 3))↑2)
8077, 78, 793eqtr4ri 2763 . . . . . . . . . 10 (𝑂↑2) = (1 / 𝑂)
812oveq1i 7379 . . . . . . . . . . . 12 (𝑍↑3) = ((𝑂𝑐(1 / 3))↑3)
82 3nn 12241 . . . . . . . . . . . . 13 3 ∈ ℕ
83 cxproot 26632 . . . . . . . . . . . . 13 ((𝑂 ∈ ℂ ∧ 3 ∈ ℕ) → ((𝑂𝑐(1 / 3))↑3) = 𝑂)
8414, 82, 83mp2an 692 . . . . . . . . . . . 12 ((𝑂𝑐(1 / 3))↑3) = 𝑂
8581, 84eqtr2i 2753 . . . . . . . . . . 11 𝑂 = (𝑍↑3)
8685oveq1i 7379 . . . . . . . . . 10 (𝑂↑2) = ((𝑍↑3)↑2)
8785oveq2i 7380 . . . . . . . . . 10 (1 / 𝑂) = (1 / (𝑍↑3))
8880, 86, 873eqtr3i 2760 . . . . . . . . 9 ((𝑍↑3)↑2) = (1 / (𝑍↑3))
89 3t2e6 12323 . . . . . . . . . . 11 (3 · 2) = 6
9089oveq2i 7380 . . . . . . . . . 10 (𝑍↑(3 · 2)) = (𝑍↑6)
91 2nn0 12435 . . . . . . . . . . 11 2 ∈ ℕ0
92 expmul 14048 . . . . . . . . . . 11 ((𝑍 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (𝑍↑(3 · 2)) = ((𝑍↑3)↑2))
9319, 29, 91, 92mp3an 1463 . . . . . . . . . 10 (𝑍↑(3 · 2)) = ((𝑍↑3)↑2)
9490, 93eqtr3i 2754 . . . . . . . . 9 (𝑍↑6) = ((𝑍↑3)↑2)
95 3z 12542 . . . . . . . . . 10 3 ∈ ℤ
96 exprec 14044 . . . . . . . . . 10 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ∧ 3 ∈ ℤ) → ((1 / 𝑍)↑3) = (1 / (𝑍↑3)))
9719, 25, 95, 96mp3an 1463 . . . . . . . . 9 ((1 / 𝑍)↑3) = (1 / (𝑍↑3))
9888, 94, 973eqtr4i 2762 . . . . . . . 8 (𝑍↑6) = ((1 / 𝑍)↑3)
9998oveq2i 7380 . . . . . . 7 ((𝑍↑3) + (𝑍↑6)) = ((𝑍↑3) + ((1 / 𝑍)↑3))
10051, 52, 993eqtr3i 2760 . . . . . 6 -1 = ((𝑍↑3) + ((1 / 𝑍)↑3))
101 sqdivid 14063 . . . . . . . . . . . 12 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) → ((𝑍↑2) / 𝑍) = 𝑍)
10219, 25, 101mp2an 692 . . . . . . . . . . 11 ((𝑍↑2) / 𝑍) = 𝑍
10319sqcli 14122 . . . . . . . . . . . 12 (𝑍↑2) ∈ ℂ
104103, 19, 25divreci 11903 . . . . . . . . . . 11 ((𝑍↑2) / 𝑍) = ((𝑍↑2) · (1 / 𝑍))
105102, 104eqtr3i 2754 . . . . . . . . . 10 𝑍 = ((𝑍↑2) · (1 / 𝑍))
10615, 5negsubi 11476 . . . . . . . . . . . . . 14 (1 + -2) = (1 − 2)
1075, 15negsubdi2i 11484 . . . . . . . . . . . . . 14 -(2 − 1) = (1 − 2)
108 2m1e1 12283 . . . . . . . . . . . . . . 15 (2 − 1) = 1
109108negeqi 11390 . . . . . . . . . . . . . 14 -(2 − 1) = -1
110106, 107, 1093eqtr2i 2758 . . . . . . . . . . . . 13 (1 + -2) = -1
111110oveq2i 7380 . . . . . . . . . . . 12 (𝑍↑(1 + -2)) = (𝑍↑-1)
112 1z 12539 . . . . . . . . . . . . 13 1 ∈ ℤ
11391nn0negzi 12548 . . . . . . . . . . . . 13 -2 ∈ ℤ
114 expaddz 14047 . . . . . . . . . . . . 13 (((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (1 ∈ ℤ ∧ -2 ∈ ℤ)) → (𝑍↑(1 + -2)) = ((𝑍↑1) · (𝑍↑-2)))
11519, 25, 112, 113, 114mp4an 693 . . . . . . . . . . . 12 (𝑍↑(1 + -2)) = ((𝑍↑1) · (𝑍↑-2))
116 expn1 14012 . . . . . . . . . . . . 13 (𝑍 ∈ ℂ → (𝑍↑-1) = (1 / 𝑍))
11719, 116ax-mp 5 . . . . . . . . . . . 12 (𝑍↑-1) = (1 / 𝑍)
118111, 115, 1173eqtr3i 2760 . . . . . . . . . . 11 ((𝑍↑1) · (𝑍↑-2)) = (1 / 𝑍)
119 exp1 14008 . . . . . . . . . . . . 13 (𝑍 ∈ ℂ → (𝑍↑1) = 𝑍)
12019, 119ax-mp 5 . . . . . . . . . . . 12 (𝑍↑1) = 𝑍
121 expnegz 14037 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ∧ 2 ∈ ℤ) → (𝑍↑-2) = (1 / (𝑍↑2)))
12219, 25, 70, 121mp3an 1463 . . . . . . . . . . . . 13 (𝑍↑-2) = (1 / (𝑍↑2))
12319, 25sqrecii 14124 . . . . . . . . . . . . 13 ((1 / 𝑍)↑2) = (1 / (𝑍↑2))
124122, 123eqtr4i 2755 . . . . . . . . . . . 12 (𝑍↑-2) = ((1 / 𝑍)↑2)
125120, 124oveq12i 7381 . . . . . . . . . . 11 ((𝑍↑1) · (𝑍↑-2)) = (𝑍 · ((1 / 𝑍)↑2))
126118, 125eqtr3i 2754 . . . . . . . . . 10 (1 / 𝑍) = (𝑍 · ((1 / 𝑍)↑2))
127105, 126oveq12i 7381 . . . . . . . . 9 (𝑍 + (1 / 𝑍)) = (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))
1281, 127eqtri 2752 . . . . . . . 8 𝐴 = (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))
129128oveq2i 7380 . . . . . . 7 (3 · 𝐴) = (3 · (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2))))
130103, 26mulcli 11157 . . . . . . . 8 ((𝑍↑2) · (1 / 𝑍)) ∈ ℂ
13126sqcli 14122 . . . . . . . . 9 ((1 / 𝑍)↑2) ∈ ℂ
13219, 131mulcli 11157 . . . . . . . 8 (𝑍 · ((1 / 𝑍)↑2)) ∈ ℂ
1339, 130, 132adddii 11162 . . . . . . 7 (3 · (((𝑍↑2) · (1 / 𝑍)) + (𝑍 · ((1 / 𝑍)↑2)))) = ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))
134129, 133eqtri 2752 . . . . . 6 (3 · 𝐴) = ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))
135100, 134oveq12i 7381 . . . . 5 (-1 + (3 · 𝐴)) = (((𝑍↑3) + ((1 / 𝑍)↑3)) + ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2)))))
13615negcli 11466 . . . . . 6 -1 ∈ ℂ
1379, 28mulcli 11157 . . . . . 6 (3 · 𝐴) ∈ ℂ
138136, 137addcomi 11341 . . . . 5 (-1 + (3 · 𝐴)) = ((3 · 𝐴) + -1)
139 expcl 14020 . . . . . . 7 (((1 / 𝑍) ∈ ℂ ∧ 3 ∈ ℕ0) → ((1 / 𝑍)↑3) ∈ ℂ)
14026, 29, 139mp2an 692 . . . . . 6 ((1 / 𝑍)↑3) ∈ ℂ
1419, 130mulcli 11157 . . . . . 6 (3 · ((𝑍↑2) · (1 / 𝑍))) ∈ ℂ
1429, 132mulcli 11157 . . . . . 6 (3 · (𝑍 · ((1 / 𝑍)↑2))) ∈ ℂ
14350, 140, 141, 142add42i 11376 . . . . 5 (((𝑍↑3) + ((1 / 𝑍)↑3)) + ((3 · ((𝑍↑2) · (1 / 𝑍))) + (3 · (𝑍 · ((1 / 𝑍)↑2))))) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
144135, 138, 1433eqtr3i 2760 . . . 4 ((3 · 𝐴) + -1) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
14539, 45, 1443eqtri 2756 . . 3 -((-3 · 𝐴) + 1) = (((𝑍↑3) + (3 · ((𝑍↑2) · (1 / 𝑍)))) + ((3 · (𝑍 · ((1 / 𝑍)↑2))) + ((1 / 𝑍)↑3)))
14637, 38, 1453eqtr4i 2762 . 2 (𝐴↑3) = -((-3 · 𝐴) + 1)
147 addeq0 11577 . . 3 (((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ) → (((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0 ↔ (𝐴↑3) = -((-3 · 𝐴) + 1)))
148147biimpar 477 . 2 ((((𝐴↑3) ∈ ℂ ∧ ((-3 · 𝐴) + 1) ∈ ℂ) ∧ (𝐴↑3) = -((-3 · 𝐴) + 1)) → ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0)
14935, 146, 148mp2an 692 1 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  6c6 12221  0cn0 12418  cz 12505  cexp 14002  expce 16003  πcpi 16008  𝑐ccxp 26497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-cxp 26499
This theorem is referenced by:  cos9thpiminply  33771
  Copyright terms: Public domain W3C validator