| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpinconstrlem1 | Structured version Visualization version GIF version | ||
| Description: The complex number 𝑂, representing an angle of (2 · π) / 3, is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpinconstr.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| Ref | Expression |
|---|---|
| cos9thpinconstrlem1 | ⊢ 𝑂 ∈ Constr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12517 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33747 | . . 3 ⊢ (⊤ → 0 ∈ Constr) |
| 3 | 1zzd 12540 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33747 | . . 3 ⊢ (⊤ → 1 ∈ Constr) |
| 5 | 4 | constrnegcl 33746 | . . 3 ⊢ (⊤ → -1 ∈ Constr) |
| 6 | cos9thpinconstr.1 | . . . 4 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 7 | ax-icn 11103 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 9 | 2cnd 12240 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℂ) | |
| 10 | picn 26400 | . . . . . . . . 9 ⊢ π ∈ ℂ | |
| 11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → π ∈ ℂ) |
| 12 | 9, 11 | mulcld 11170 | . . . . . . 7 ⊢ (⊤ → (2 · π) ∈ ℂ) |
| 13 | 8, 12 | mulcld 11170 | . . . . . 6 ⊢ (⊤ → (i · (2 · π)) ∈ ℂ) |
| 14 | 3cn 12243 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ∈ ℂ) |
| 16 | 3ne0 12268 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ≠ 0) |
| 18 | 13, 15, 17 | divcld 11934 | . . . . 5 ⊢ (⊤ → ((i · (2 · π)) / 3) ∈ ℂ) |
| 19 | 18 | efcld 16025 | . . . 4 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) |
| 20 | 6, 19 | eqeltrid 2832 | . . 3 ⊢ (⊤ → 𝑂 ∈ ℂ) |
| 21 | 0cnd 11143 | . . . 4 ⊢ (⊤ → 0 ∈ ℂ) | |
| 22 | 5 | constrcn 33743 | . . . 4 ⊢ (⊤ → -1 ∈ ℂ) |
| 23 | 1cnd 11145 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℂ) | |
| 24 | 21, 23 | subnegd 11516 | . . . . . 6 ⊢ (⊤ → (0 − -1) = (0 + 1)) |
| 25 | 23 | addlidd 11351 | . . . . . 6 ⊢ (⊤ → (0 + 1) = 1) |
| 26 | 24, 25 | eqtrd 2764 | . . . . 5 ⊢ (⊤ → (0 − -1) = 1) |
| 27 | ax-1ne0 11113 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
| 29 | 26, 28 | eqnetrd 2992 | . . . 4 ⊢ (⊤ → (0 − -1) ≠ 0) |
| 30 | 21, 22, 29 | subne0ad 11520 | . . 3 ⊢ (⊤ → 0 ≠ -1) |
| 31 | 8, 12, 15, 17 | divassd 11969 | . . . . . . . 8 ⊢ (⊤ → ((i · (2 · π)) / 3) = (i · ((2 · π) / 3))) |
| 32 | 31 | fveq2d 6844 | . . . . . . 7 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) = (exp‘(i · ((2 · π) / 3)))) |
| 33 | 32 | fveq2d 6844 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = (abs‘(exp‘(i · ((2 · π) / 3))))) |
| 34 | 2re 12236 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 2 ∈ ℝ) |
| 36 | pire 26399 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 37 | 36 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → π ∈ ℝ) |
| 38 | 35, 37 | remulcld 11180 | . . . . . . . 8 ⊢ (⊤ → (2 · π) ∈ ℝ) |
| 39 | 3re 12242 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 40 | 39 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 3 ∈ ℝ) |
| 41 | 38, 40, 17 | redivcld 11986 | . . . . . . 7 ⊢ (⊤ → ((2 · π) / 3) ∈ ℝ) |
| 42 | absefi 16140 | . . . . . . 7 ⊢ (((2 · π) / 3) ∈ ℝ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) | |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) |
| 44 | 33, 43 | eqtrd 2764 | . . . . 5 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = 1) |
| 45 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3))) |
| 46 | 45 | fveq2d 6844 | . . . . 5 ⊢ (⊤ → (abs‘𝑂) = (abs‘(exp‘((i · (2 · π)) / 3)))) |
| 47 | 1red 11151 | . . . . . 6 ⊢ (⊤ → 1 ∈ ℝ) | |
| 48 | 0le1 11677 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 49 | 48 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ≤ 1) |
| 50 | 47, 49 | absidd 15365 | . . . . 5 ⊢ (⊤ → (abs‘1) = 1) |
| 51 | 44, 46, 50 | 3eqtr4d 2774 | . . . 4 ⊢ (⊤ → (abs‘𝑂) = (abs‘1)) |
| 52 | 20 | subid1d 11498 | . . . . 5 ⊢ (⊤ → (𝑂 − 0) = 𝑂) |
| 53 | 52 | fveq2d 6844 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘𝑂)) |
| 54 | 23 | subid1d 11498 | . . . . 5 ⊢ (⊤ → (1 − 0) = 1) |
| 55 | 54 | fveq2d 6844 | . . . 4 ⊢ (⊤ → (abs‘(1 − 0)) = (abs‘1)) |
| 56 | 51, 53, 55 | 3eqtr4d 2774 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘(1 − 0))) |
| 57 | 20, 23 | subnegd 11516 | . . . . . 6 ⊢ (⊤ → (𝑂 − -1) = (𝑂 + 1)) |
| 58 | 20, 23 | addcld 11169 | . . . . . . 7 ⊢ (⊤ → (𝑂 + 1) ∈ ℂ) |
| 59 | 20 | sqcld 14085 | . . . . . . 7 ⊢ (⊤ → (𝑂↑2) ∈ ℂ) |
| 60 | 58, 59 | addcomd 11352 | . . . . . . . 8 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = ((𝑂↑2) + (𝑂 + 1))) |
| 61 | 6 | cos9thpiminplylem3 33767 | . . . . . . . . 9 ⊢ ((𝑂↑2) + (𝑂 + 1)) = 0 |
| 62 | 61 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → ((𝑂↑2) + (𝑂 + 1)) = 0) |
| 63 | 60, 62 | eqtrd 2764 | . . . . . . 7 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = 0) |
| 64 | addeq0 11577 | . . . . . . . 8 ⊢ (((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) → (((𝑂 + 1) + (𝑂↑2)) = 0 ↔ (𝑂 + 1) = -(𝑂↑2))) | |
| 65 | 64 | biimpa 476 | . . . . . . 7 ⊢ ((((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) ∧ ((𝑂 + 1) + (𝑂↑2)) = 0) → (𝑂 + 1) = -(𝑂↑2)) |
| 66 | 58, 59, 63, 65 | syl21anc 837 | . . . . . 6 ⊢ (⊤ → (𝑂 + 1) = -(𝑂↑2)) |
| 67 | 57, 66 | eqtrd 2764 | . . . . 5 ⊢ (⊤ → (𝑂 − -1) = -(𝑂↑2)) |
| 68 | 67 | fveq2d 6844 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘-(𝑂↑2))) |
| 69 | 59 | absnegd 15394 | . . . 4 ⊢ (⊤ → (abs‘-(𝑂↑2)) = (abs‘(𝑂↑2))) |
| 70 | 2nn0 12435 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 71 | 70 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2 ∈ ℕ0) |
| 72 | 20, 71 | absexpd 15397 | . . . . 5 ⊢ (⊤ → (abs‘(𝑂↑2)) = ((abs‘𝑂)↑2)) |
| 73 | 46, 44 | eqtrd 2764 | . . . . . 6 ⊢ (⊤ → (abs‘𝑂) = 1) |
| 74 | 73 | oveq1d 7384 | . . . . 5 ⊢ (⊤ → ((abs‘𝑂)↑2) = (1↑2)) |
| 75 | sq1 14136 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 76 | 55, 50 | eqtrd 2764 | . . . . . 6 ⊢ (⊤ → (abs‘(1 − 0)) = 1) |
| 77 | 75, 76 | eqtr4id 2783 | . . . . 5 ⊢ (⊤ → (1↑2) = (abs‘(1 − 0))) |
| 78 | 72, 74, 77 | 3eqtrd 2768 | . . . 4 ⊢ (⊤ → (abs‘(𝑂↑2)) = (abs‘(1 − 0))) |
| 79 | 68, 69, 78 | 3eqtrd 2768 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘(1 − 0))) |
| 80 | 2, 4, 2, 5, 4, 2, 20, 30, 56, 79 | constrcccl 33741 | . 2 ⊢ (⊤ → 𝑂 ∈ Constr) |
| 81 | 80 | mptru 1547 | 1 ⊢ 𝑂 ∈ Constr |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 ≤ cle 11185 − cmin 11381 -cneg 11382 / cdiv 11811 2c2 12217 3c3 12218 ℕ0cn0 12418 ↑cexp 14002 abscabs 15176 expce 16003 πcpi 16008 Constrcconstr 33712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-limc 25800 df-dv 25801 df-constr 33713 |
| This theorem is referenced by: cos9thpinconstr 33774 |
| Copyright terms: Public domain | W3C validator |