| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpinconstrlem1 | Structured version Visualization version GIF version | ||
| Description: The complex number 𝑂, representing an angle of (2 · π) / 3, is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpinconstr.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| Ref | Expression |
|---|---|
| cos9thpinconstrlem1 | ⊢ 𝑂 ∈ Constr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12598 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33744 | . . 3 ⊢ (⊤ → 0 ∈ Constr) |
| 3 | 1zzd 12621 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33744 | . . 3 ⊢ (⊤ → 1 ∈ Constr) |
| 5 | 4 | constrnegcl 33743 | . . 3 ⊢ (⊤ → -1 ∈ Constr) |
| 6 | cos9thpinconstr.1 | . . . 4 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 7 | ax-icn 11186 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 9 | 2cnd 12316 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℂ) | |
| 10 | picn 26417 | . . . . . . . . 9 ⊢ π ∈ ℂ | |
| 11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → π ∈ ℂ) |
| 12 | 9, 11 | mulcld 11253 | . . . . . . 7 ⊢ (⊤ → (2 · π) ∈ ℂ) |
| 13 | 8, 12 | mulcld 11253 | . . . . . 6 ⊢ (⊤ → (i · (2 · π)) ∈ ℂ) |
| 14 | 3cn 12319 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ∈ ℂ) |
| 16 | 3ne0 12344 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ≠ 0) |
| 18 | 13, 15, 17 | divcld 12015 | . . . . 5 ⊢ (⊤ → ((i · (2 · π)) / 3) ∈ ℂ) |
| 19 | 18 | efcld 16097 | . . . 4 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) |
| 20 | 6, 19 | eqeltrid 2838 | . . 3 ⊢ (⊤ → 𝑂 ∈ ℂ) |
| 21 | 0cnd 11226 | . . . 4 ⊢ (⊤ → 0 ∈ ℂ) | |
| 22 | 5 | constrcn 33740 | . . . 4 ⊢ (⊤ → -1 ∈ ℂ) |
| 23 | 1cnd 11228 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℂ) | |
| 24 | 21, 23 | subnegd 11599 | . . . . . 6 ⊢ (⊤ → (0 − -1) = (0 + 1)) |
| 25 | 23 | addlidd 11434 | . . . . . 6 ⊢ (⊤ → (0 + 1) = 1) |
| 26 | 24, 25 | eqtrd 2770 | . . . . 5 ⊢ (⊤ → (0 − -1) = 1) |
| 27 | ax-1ne0 11196 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
| 29 | 26, 28 | eqnetrd 2999 | . . . 4 ⊢ (⊤ → (0 − -1) ≠ 0) |
| 30 | 21, 22, 29 | subne0ad 11603 | . . 3 ⊢ (⊤ → 0 ≠ -1) |
| 31 | 8, 12, 15, 17 | divassd 12050 | . . . . . . . 8 ⊢ (⊤ → ((i · (2 · π)) / 3) = (i · ((2 · π) / 3))) |
| 32 | 31 | fveq2d 6879 | . . . . . . 7 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) = (exp‘(i · ((2 · π) / 3)))) |
| 33 | 32 | fveq2d 6879 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = (abs‘(exp‘(i · ((2 · π) / 3))))) |
| 34 | 2re 12312 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 2 ∈ ℝ) |
| 36 | pire 26416 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 37 | 36 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → π ∈ ℝ) |
| 38 | 35, 37 | remulcld 11263 | . . . . . . . 8 ⊢ (⊤ → (2 · π) ∈ ℝ) |
| 39 | 3re 12318 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 40 | 39 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 3 ∈ ℝ) |
| 41 | 38, 40, 17 | redivcld 12067 | . . . . . . 7 ⊢ (⊤ → ((2 · π) / 3) ∈ ℝ) |
| 42 | absefi 16212 | . . . . . . 7 ⊢ (((2 · π) / 3) ∈ ℝ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) | |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) |
| 44 | 33, 43 | eqtrd 2770 | . . . . 5 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = 1) |
| 45 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3))) |
| 46 | 45 | fveq2d 6879 | . . . . 5 ⊢ (⊤ → (abs‘𝑂) = (abs‘(exp‘((i · (2 · π)) / 3)))) |
| 47 | 1red 11234 | . . . . . 6 ⊢ (⊤ → 1 ∈ ℝ) | |
| 48 | 0le1 11758 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 49 | 48 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ≤ 1) |
| 50 | 47, 49 | absidd 15439 | . . . . 5 ⊢ (⊤ → (abs‘1) = 1) |
| 51 | 44, 46, 50 | 3eqtr4d 2780 | . . . 4 ⊢ (⊤ → (abs‘𝑂) = (abs‘1)) |
| 52 | 20 | subid1d 11581 | . . . . 5 ⊢ (⊤ → (𝑂 − 0) = 𝑂) |
| 53 | 52 | fveq2d 6879 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘𝑂)) |
| 54 | 23 | subid1d 11581 | . . . . 5 ⊢ (⊤ → (1 − 0) = 1) |
| 55 | 54 | fveq2d 6879 | . . . 4 ⊢ (⊤ → (abs‘(1 − 0)) = (abs‘1)) |
| 56 | 51, 53, 55 | 3eqtr4d 2780 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘(1 − 0))) |
| 57 | 20, 23 | subnegd 11599 | . . . . . 6 ⊢ (⊤ → (𝑂 − -1) = (𝑂 + 1)) |
| 58 | 20, 23 | addcld 11252 | . . . . . . 7 ⊢ (⊤ → (𝑂 + 1) ∈ ℂ) |
| 59 | 20 | sqcld 14160 | . . . . . . 7 ⊢ (⊤ → (𝑂↑2) ∈ ℂ) |
| 60 | 58, 59 | addcomd 11435 | . . . . . . . 8 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = ((𝑂↑2) + (𝑂 + 1))) |
| 61 | 6 | cos9thpiminplylem3 33764 | . . . . . . . . 9 ⊢ ((𝑂↑2) + (𝑂 + 1)) = 0 |
| 62 | 61 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → ((𝑂↑2) + (𝑂 + 1)) = 0) |
| 63 | 60, 62 | eqtrd 2770 | . . . . . . 7 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = 0) |
| 64 | addeq0 11658 | . . . . . . . 8 ⊢ (((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) → (((𝑂 + 1) + (𝑂↑2)) = 0 ↔ (𝑂 + 1) = -(𝑂↑2))) | |
| 65 | 64 | biimpa 476 | . . . . . . 7 ⊢ ((((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) ∧ ((𝑂 + 1) + (𝑂↑2)) = 0) → (𝑂 + 1) = -(𝑂↑2)) |
| 66 | 58, 59, 63, 65 | syl21anc 837 | . . . . . 6 ⊢ (⊤ → (𝑂 + 1) = -(𝑂↑2)) |
| 67 | 57, 66 | eqtrd 2770 | . . . . 5 ⊢ (⊤ → (𝑂 − -1) = -(𝑂↑2)) |
| 68 | 67 | fveq2d 6879 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘-(𝑂↑2))) |
| 69 | 59 | absnegd 15466 | . . . 4 ⊢ (⊤ → (abs‘-(𝑂↑2)) = (abs‘(𝑂↑2))) |
| 70 | 2nn0 12516 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 71 | 70 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2 ∈ ℕ0) |
| 72 | 20, 71 | absexpd 15469 | . . . . 5 ⊢ (⊤ → (abs‘(𝑂↑2)) = ((abs‘𝑂)↑2)) |
| 73 | 46, 44 | eqtrd 2770 | . . . . . 6 ⊢ (⊤ → (abs‘𝑂) = 1) |
| 74 | 73 | oveq1d 7418 | . . . . 5 ⊢ (⊤ → ((abs‘𝑂)↑2) = (1↑2)) |
| 75 | sq1 14211 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 76 | 55, 50 | eqtrd 2770 | . . . . . 6 ⊢ (⊤ → (abs‘(1 − 0)) = 1) |
| 77 | 75, 76 | eqtr4id 2789 | . . . . 5 ⊢ (⊤ → (1↑2) = (abs‘(1 − 0))) |
| 78 | 72, 74, 77 | 3eqtrd 2774 | . . . 4 ⊢ (⊤ → (abs‘(𝑂↑2)) = (abs‘(1 − 0))) |
| 79 | 68, 69, 78 | 3eqtrd 2774 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘(1 − 0))) |
| 80 | 2, 4, 2, 5, 4, 2, 20, 30, 56, 79 | constrcccl 33738 | . 2 ⊢ (⊤ → 𝑂 ∈ Constr) |
| 81 | 80 | mptru 1547 | 1 ⊢ 𝑂 ∈ Constr |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 ici 11129 + caddc 11130 · cmul 11132 ≤ cle 11268 − cmin 11464 -cneg 11465 / cdiv 11892 2c2 12293 3c3 12294 ℕ0cn0 12499 ↑cexp 14077 abscabs 15251 expce 16075 πcpi 16080 Constrcconstr 33709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-shft 15084 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-ef 16081 df-sin 16083 df-cos 16084 df-pi 16086 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-limc 25817 df-dv 25818 df-constr 33710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |