| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpinconstrlem1 | Structured version Visualization version GIF version | ||
| Description: The complex number 𝑂, representing an angle of (2 · π) / 3, is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpinconstr.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| Ref | Expression |
|---|---|
| cos9thpinconstrlem1 | ⊢ 𝑂 ∈ Constr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12483 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33737 | . . 3 ⊢ (⊤ → 0 ∈ Constr) |
| 3 | 1zzd 12506 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33737 | . . 3 ⊢ (⊤ → 1 ∈ Constr) |
| 5 | 4 | constrnegcl 33736 | . . 3 ⊢ (⊤ → -1 ∈ Constr) |
| 6 | cos9thpinconstr.1 | . . . 4 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 7 | ax-icn 11068 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 9 | 2cnd 12206 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℂ) | |
| 10 | picn 26365 | . . . . . . . . 9 ⊢ π ∈ ℂ | |
| 11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → π ∈ ℂ) |
| 12 | 9, 11 | mulcld 11135 | . . . . . . 7 ⊢ (⊤ → (2 · π) ∈ ℂ) |
| 13 | 8, 12 | mulcld 11135 | . . . . . 6 ⊢ (⊤ → (i · (2 · π)) ∈ ℂ) |
| 14 | 3cn 12209 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ∈ ℂ) |
| 16 | 3ne0 12234 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ≠ 0) |
| 18 | 13, 15, 17 | divcld 11900 | . . . . 5 ⊢ (⊤ → ((i · (2 · π)) / 3) ∈ ℂ) |
| 19 | 18 | efcld 15990 | . . . 4 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) |
| 20 | 6, 19 | eqeltrid 2832 | . . 3 ⊢ (⊤ → 𝑂 ∈ ℂ) |
| 21 | 0cnd 11108 | . . . 4 ⊢ (⊤ → 0 ∈ ℂ) | |
| 22 | 5 | constrcn 33733 | . . . 4 ⊢ (⊤ → -1 ∈ ℂ) |
| 23 | 1cnd 11110 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℂ) | |
| 24 | 21, 23 | subnegd 11482 | . . . . . 6 ⊢ (⊤ → (0 − -1) = (0 + 1)) |
| 25 | 23 | addlidd 11317 | . . . . . 6 ⊢ (⊤ → (0 + 1) = 1) |
| 26 | 24, 25 | eqtrd 2764 | . . . . 5 ⊢ (⊤ → (0 − -1) = 1) |
| 27 | ax-1ne0 11078 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
| 29 | 26, 28 | eqnetrd 2992 | . . . 4 ⊢ (⊤ → (0 − -1) ≠ 0) |
| 30 | 21, 22, 29 | subne0ad 11486 | . . 3 ⊢ (⊤ → 0 ≠ -1) |
| 31 | 8, 12, 15, 17 | divassd 11935 | . . . . . . . 8 ⊢ (⊤ → ((i · (2 · π)) / 3) = (i · ((2 · π) / 3))) |
| 32 | 31 | fveq2d 6826 | . . . . . . 7 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) = (exp‘(i · ((2 · π) / 3)))) |
| 33 | 32 | fveq2d 6826 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = (abs‘(exp‘(i · ((2 · π) / 3))))) |
| 34 | 2re 12202 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 2 ∈ ℝ) |
| 36 | pire 26364 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 37 | 36 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → π ∈ ℝ) |
| 38 | 35, 37 | remulcld 11145 | . . . . . . . 8 ⊢ (⊤ → (2 · π) ∈ ℝ) |
| 39 | 3re 12208 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 40 | 39 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 3 ∈ ℝ) |
| 41 | 38, 40, 17 | redivcld 11952 | . . . . . . 7 ⊢ (⊤ → ((2 · π) / 3) ∈ ℝ) |
| 42 | absefi 16105 | . . . . . . 7 ⊢ (((2 · π) / 3) ∈ ℝ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) | |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) |
| 44 | 33, 43 | eqtrd 2764 | . . . . 5 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = 1) |
| 45 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3))) |
| 46 | 45 | fveq2d 6826 | . . . . 5 ⊢ (⊤ → (abs‘𝑂) = (abs‘(exp‘((i · (2 · π)) / 3)))) |
| 47 | 1red 11116 | . . . . . 6 ⊢ (⊤ → 1 ∈ ℝ) | |
| 48 | 0le1 11643 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 49 | 48 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ≤ 1) |
| 50 | 47, 49 | absidd 15330 | . . . . 5 ⊢ (⊤ → (abs‘1) = 1) |
| 51 | 44, 46, 50 | 3eqtr4d 2774 | . . . 4 ⊢ (⊤ → (abs‘𝑂) = (abs‘1)) |
| 52 | 20 | subid1d 11464 | . . . . 5 ⊢ (⊤ → (𝑂 − 0) = 𝑂) |
| 53 | 52 | fveq2d 6826 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘𝑂)) |
| 54 | 23 | subid1d 11464 | . . . . 5 ⊢ (⊤ → (1 − 0) = 1) |
| 55 | 54 | fveq2d 6826 | . . . 4 ⊢ (⊤ → (abs‘(1 − 0)) = (abs‘1)) |
| 56 | 51, 53, 55 | 3eqtr4d 2774 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘(1 − 0))) |
| 57 | 20, 23 | subnegd 11482 | . . . . . 6 ⊢ (⊤ → (𝑂 − -1) = (𝑂 + 1)) |
| 58 | 20, 23 | addcld 11134 | . . . . . . 7 ⊢ (⊤ → (𝑂 + 1) ∈ ℂ) |
| 59 | 20 | sqcld 14051 | . . . . . . 7 ⊢ (⊤ → (𝑂↑2) ∈ ℂ) |
| 60 | 58, 59 | addcomd 11318 | . . . . . . . 8 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = ((𝑂↑2) + (𝑂 + 1))) |
| 61 | 6 | cos9thpiminplylem3 33757 | . . . . . . . . 9 ⊢ ((𝑂↑2) + (𝑂 + 1)) = 0 |
| 62 | 61 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → ((𝑂↑2) + (𝑂 + 1)) = 0) |
| 63 | 60, 62 | eqtrd 2764 | . . . . . . 7 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = 0) |
| 64 | addeq0 11543 | . . . . . . . 8 ⊢ (((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) → (((𝑂 + 1) + (𝑂↑2)) = 0 ↔ (𝑂 + 1) = -(𝑂↑2))) | |
| 65 | 64 | biimpa 476 | . . . . . . 7 ⊢ ((((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) ∧ ((𝑂 + 1) + (𝑂↑2)) = 0) → (𝑂 + 1) = -(𝑂↑2)) |
| 66 | 58, 59, 63, 65 | syl21anc 837 | . . . . . 6 ⊢ (⊤ → (𝑂 + 1) = -(𝑂↑2)) |
| 67 | 57, 66 | eqtrd 2764 | . . . . 5 ⊢ (⊤ → (𝑂 − -1) = -(𝑂↑2)) |
| 68 | 67 | fveq2d 6826 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘-(𝑂↑2))) |
| 69 | 59 | absnegd 15359 | . . . 4 ⊢ (⊤ → (abs‘-(𝑂↑2)) = (abs‘(𝑂↑2))) |
| 70 | 2nn0 12401 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 71 | 70 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2 ∈ ℕ0) |
| 72 | 20, 71 | absexpd 15362 | . . . . 5 ⊢ (⊤ → (abs‘(𝑂↑2)) = ((abs‘𝑂)↑2)) |
| 73 | 46, 44 | eqtrd 2764 | . . . . . 6 ⊢ (⊤ → (abs‘𝑂) = 1) |
| 74 | 73 | oveq1d 7364 | . . . . 5 ⊢ (⊤ → ((abs‘𝑂)↑2) = (1↑2)) |
| 75 | sq1 14102 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 76 | 55, 50 | eqtrd 2764 | . . . . . 6 ⊢ (⊤ → (abs‘(1 − 0)) = 1) |
| 77 | 75, 76 | eqtr4id 2783 | . . . . 5 ⊢ (⊤ → (1↑2) = (abs‘(1 − 0))) |
| 78 | 72, 74, 77 | 3eqtrd 2768 | . . . 4 ⊢ (⊤ → (abs‘(𝑂↑2)) = (abs‘(1 − 0))) |
| 79 | 68, 69, 78 | 3eqtrd 2768 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘(1 − 0))) |
| 80 | 2, 4, 2, 5, 4, 2, 20, 30, 56, 79 | constrcccl 33731 | . 2 ⊢ (⊤ → 𝑂 ∈ Constr) |
| 81 | 80 | mptru 1547 | 1 ⊢ 𝑂 ∈ Constr |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 ici 11011 + caddc 11012 · cmul 11014 ≤ cle 11150 − cmin 11347 -cneg 11348 / cdiv 11777 2c2 12183 3c3 12184 ℕ0cn0 12384 ↑cexp 13968 abscabs 15141 expce 15968 πcpi 15973 Constrcconstr 33702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-constr 33703 |
| This theorem is referenced by: cos9thpinconstr 33764 |
| Copyright terms: Public domain | W3C validator |