| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpinconstrlem1 | Structured version Visualization version GIF version | ||
| Description: The complex number 𝑂, representing an angle of (2 · π) / 3, is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpinconstr.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| Ref | Expression |
|---|---|
| cos9thpinconstrlem1 | ⊢ 𝑂 ∈ Constr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12480 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33777 | . . 3 ⊢ (⊤ → 0 ∈ Constr) |
| 3 | 1zzd 12503 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33777 | . . 3 ⊢ (⊤ → 1 ∈ Constr) |
| 5 | 4 | constrnegcl 33776 | . . 3 ⊢ (⊤ → -1 ∈ Constr) |
| 6 | cos9thpinconstr.1 | . . . 4 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 7 | ax-icn 11065 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 9 | 2cnd 12203 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℂ) | |
| 10 | picn 26394 | . . . . . . . . 9 ⊢ π ∈ ℂ | |
| 11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → π ∈ ℂ) |
| 12 | 9, 11 | mulcld 11132 | . . . . . . 7 ⊢ (⊤ → (2 · π) ∈ ℂ) |
| 13 | 8, 12 | mulcld 11132 | . . . . . 6 ⊢ (⊤ → (i · (2 · π)) ∈ ℂ) |
| 14 | 3cn 12206 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ∈ ℂ) |
| 16 | 3ne0 12231 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ≠ 0) |
| 18 | 13, 15, 17 | divcld 11897 | . . . . 5 ⊢ (⊤ → ((i · (2 · π)) / 3) ∈ ℂ) |
| 19 | 18 | efcld 15990 | . . . 4 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) |
| 20 | 6, 19 | eqeltrid 2835 | . . 3 ⊢ (⊤ → 𝑂 ∈ ℂ) |
| 21 | 0cnd 11105 | . . . 4 ⊢ (⊤ → 0 ∈ ℂ) | |
| 22 | 5 | constrcn 33773 | . . . 4 ⊢ (⊤ → -1 ∈ ℂ) |
| 23 | 1cnd 11107 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℂ) | |
| 24 | 21, 23 | subnegd 11479 | . . . . . 6 ⊢ (⊤ → (0 − -1) = (0 + 1)) |
| 25 | 23 | addlidd 11314 | . . . . . 6 ⊢ (⊤ → (0 + 1) = 1) |
| 26 | 24, 25 | eqtrd 2766 | . . . . 5 ⊢ (⊤ → (0 − -1) = 1) |
| 27 | ax-1ne0 11075 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
| 29 | 26, 28 | eqnetrd 2995 | . . . 4 ⊢ (⊤ → (0 − -1) ≠ 0) |
| 30 | 21, 22, 29 | subne0ad 11483 | . . 3 ⊢ (⊤ → 0 ≠ -1) |
| 31 | 8, 12, 15, 17 | divassd 11932 | . . . . . . . 8 ⊢ (⊤ → ((i · (2 · π)) / 3) = (i · ((2 · π) / 3))) |
| 32 | 31 | fveq2d 6826 | . . . . . . 7 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) = (exp‘(i · ((2 · π) / 3)))) |
| 33 | 32 | fveq2d 6826 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = (abs‘(exp‘(i · ((2 · π) / 3))))) |
| 34 | 2re 12199 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 2 ∈ ℝ) |
| 36 | pire 26393 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 37 | 36 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → π ∈ ℝ) |
| 38 | 35, 37 | remulcld 11142 | . . . . . . . 8 ⊢ (⊤ → (2 · π) ∈ ℝ) |
| 39 | 3re 12205 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 40 | 39 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 3 ∈ ℝ) |
| 41 | 38, 40, 17 | redivcld 11949 | . . . . . . 7 ⊢ (⊤ → ((2 · π) / 3) ∈ ℝ) |
| 42 | absefi 16105 | . . . . . . 7 ⊢ (((2 · π) / 3) ∈ ℝ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) | |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) |
| 44 | 33, 43 | eqtrd 2766 | . . . . 5 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = 1) |
| 45 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3))) |
| 46 | 45 | fveq2d 6826 | . . . . 5 ⊢ (⊤ → (abs‘𝑂) = (abs‘(exp‘((i · (2 · π)) / 3)))) |
| 47 | 1red 11113 | . . . . . 6 ⊢ (⊤ → 1 ∈ ℝ) | |
| 48 | 0le1 11640 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 49 | 48 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ≤ 1) |
| 50 | 47, 49 | absidd 15330 | . . . . 5 ⊢ (⊤ → (abs‘1) = 1) |
| 51 | 44, 46, 50 | 3eqtr4d 2776 | . . . 4 ⊢ (⊤ → (abs‘𝑂) = (abs‘1)) |
| 52 | 20 | subid1d 11461 | . . . . 5 ⊢ (⊤ → (𝑂 − 0) = 𝑂) |
| 53 | 52 | fveq2d 6826 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘𝑂)) |
| 54 | 23 | subid1d 11461 | . . . . 5 ⊢ (⊤ → (1 − 0) = 1) |
| 55 | 54 | fveq2d 6826 | . . . 4 ⊢ (⊤ → (abs‘(1 − 0)) = (abs‘1)) |
| 56 | 51, 53, 55 | 3eqtr4d 2776 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘(1 − 0))) |
| 57 | 20, 23 | subnegd 11479 | . . . . . 6 ⊢ (⊤ → (𝑂 − -1) = (𝑂 + 1)) |
| 58 | 20, 23 | addcld 11131 | . . . . . . 7 ⊢ (⊤ → (𝑂 + 1) ∈ ℂ) |
| 59 | 20 | sqcld 14051 | . . . . . . 7 ⊢ (⊤ → (𝑂↑2) ∈ ℂ) |
| 60 | 58, 59 | addcomd 11315 | . . . . . . . 8 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = ((𝑂↑2) + (𝑂 + 1))) |
| 61 | 6 | cos9thpiminplylem3 33797 | . . . . . . . . 9 ⊢ ((𝑂↑2) + (𝑂 + 1)) = 0 |
| 62 | 61 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → ((𝑂↑2) + (𝑂 + 1)) = 0) |
| 63 | 60, 62 | eqtrd 2766 | . . . . . . 7 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = 0) |
| 64 | addeq0 11540 | . . . . . . . 8 ⊢ (((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) → (((𝑂 + 1) + (𝑂↑2)) = 0 ↔ (𝑂 + 1) = -(𝑂↑2))) | |
| 65 | 64 | biimpa 476 | . . . . . . 7 ⊢ ((((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) ∧ ((𝑂 + 1) + (𝑂↑2)) = 0) → (𝑂 + 1) = -(𝑂↑2)) |
| 66 | 58, 59, 63, 65 | syl21anc 837 | . . . . . 6 ⊢ (⊤ → (𝑂 + 1) = -(𝑂↑2)) |
| 67 | 57, 66 | eqtrd 2766 | . . . . 5 ⊢ (⊤ → (𝑂 − -1) = -(𝑂↑2)) |
| 68 | 67 | fveq2d 6826 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘-(𝑂↑2))) |
| 69 | 59 | absnegd 15359 | . . . 4 ⊢ (⊤ → (abs‘-(𝑂↑2)) = (abs‘(𝑂↑2))) |
| 70 | 2nn0 12398 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 71 | 70 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2 ∈ ℕ0) |
| 72 | 20, 71 | absexpd 15362 | . . . . 5 ⊢ (⊤ → (abs‘(𝑂↑2)) = ((abs‘𝑂)↑2)) |
| 73 | 46, 44 | eqtrd 2766 | . . . . . 6 ⊢ (⊤ → (abs‘𝑂) = 1) |
| 74 | 73 | oveq1d 7361 | . . . . 5 ⊢ (⊤ → ((abs‘𝑂)↑2) = (1↑2)) |
| 75 | sq1 14102 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 76 | 55, 50 | eqtrd 2766 | . . . . . 6 ⊢ (⊤ → (abs‘(1 − 0)) = 1) |
| 77 | 75, 76 | eqtr4id 2785 | . . . . 5 ⊢ (⊤ → (1↑2) = (abs‘(1 − 0))) |
| 78 | 72, 74, 77 | 3eqtrd 2770 | . . . 4 ⊢ (⊤ → (abs‘(𝑂↑2)) = (abs‘(1 − 0))) |
| 79 | 68, 69, 78 | 3eqtrd 2770 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘(1 − 0))) |
| 80 | 2, 4, 2, 5, 4, 2, 20, 30, 56, 79 | constrcccl 33771 | . 2 ⊢ (⊤ → 𝑂 ∈ Constr) |
| 81 | 80 | mptru 1548 | 1 ⊢ 𝑂 ∈ Constr |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 ici 11008 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 -cneg 11345 / cdiv 11774 2c2 12180 3c3 12181 ℕ0cn0 12381 ↑cexp 13968 abscabs 15141 expce 15968 πcpi 15973 Constrcconstr 33742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-constr 33743 |
| This theorem is referenced by: cos9thpinconstr 33804 |
| Copyright terms: Public domain | W3C validator |