| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpinconstrlem1 | Structured version Visualization version GIF version | ||
| Description: The complex number 𝑂, representing an angle of (2 · π) / 3, is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpinconstr.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| Ref | Expression |
|---|---|
| cos9thpinconstrlem1 | ⊢ 𝑂 ∈ Constr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 12548 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
| 2 | 1 | zconstr 33761 | . . 3 ⊢ (⊤ → 0 ∈ Constr) |
| 3 | 1zzd 12571 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 4 | 3 | zconstr 33761 | . . 3 ⊢ (⊤ → 1 ∈ Constr) |
| 5 | 4 | constrnegcl 33760 | . . 3 ⊢ (⊤ → -1 ∈ Constr) |
| 6 | cos9thpinconstr.1 | . . . 4 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 7 | ax-icn 11134 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 9 | 2cnd 12271 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℂ) | |
| 10 | picn 26374 | . . . . . . . . 9 ⊢ π ∈ ℂ | |
| 11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → π ∈ ℂ) |
| 12 | 9, 11 | mulcld 11201 | . . . . . . 7 ⊢ (⊤ → (2 · π) ∈ ℂ) |
| 13 | 8, 12 | mulcld 11201 | . . . . . 6 ⊢ (⊤ → (i · (2 · π)) ∈ ℂ) |
| 14 | 3cn 12274 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ∈ ℂ) |
| 16 | 3ne0 12299 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ≠ 0) |
| 18 | 13, 15, 17 | divcld 11965 | . . . . 5 ⊢ (⊤ → ((i · (2 · π)) / 3) ∈ ℂ) |
| 19 | 18 | efcld 16056 | . . . 4 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) |
| 20 | 6, 19 | eqeltrid 2833 | . . 3 ⊢ (⊤ → 𝑂 ∈ ℂ) |
| 21 | 0cnd 11174 | . . . 4 ⊢ (⊤ → 0 ∈ ℂ) | |
| 22 | 5 | constrcn 33757 | . . . 4 ⊢ (⊤ → -1 ∈ ℂ) |
| 23 | 1cnd 11176 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℂ) | |
| 24 | 21, 23 | subnegd 11547 | . . . . . 6 ⊢ (⊤ → (0 − -1) = (0 + 1)) |
| 25 | 23 | addlidd 11382 | . . . . . 6 ⊢ (⊤ → (0 + 1) = 1) |
| 26 | 24, 25 | eqtrd 2765 | . . . . 5 ⊢ (⊤ → (0 − -1) = 1) |
| 27 | ax-1ne0 11144 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
| 29 | 26, 28 | eqnetrd 2993 | . . . 4 ⊢ (⊤ → (0 − -1) ≠ 0) |
| 30 | 21, 22, 29 | subne0ad 11551 | . . 3 ⊢ (⊤ → 0 ≠ -1) |
| 31 | 8, 12, 15, 17 | divassd 12000 | . . . . . . . 8 ⊢ (⊤ → ((i · (2 · π)) / 3) = (i · ((2 · π) / 3))) |
| 32 | 31 | fveq2d 6865 | . . . . . . 7 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) = (exp‘(i · ((2 · π) / 3)))) |
| 33 | 32 | fveq2d 6865 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = (abs‘(exp‘(i · ((2 · π) / 3))))) |
| 34 | 2re 12267 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 2 ∈ ℝ) |
| 36 | pire 26373 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
| 37 | 36 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → π ∈ ℝ) |
| 38 | 35, 37 | remulcld 11211 | . . . . . . . 8 ⊢ (⊤ → (2 · π) ∈ ℝ) |
| 39 | 3re 12273 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 40 | 39 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 3 ∈ ℝ) |
| 41 | 38, 40, 17 | redivcld 12017 | . . . . . . 7 ⊢ (⊤ → ((2 · π) / 3) ∈ ℝ) |
| 42 | absefi 16171 | . . . . . . 7 ⊢ (((2 · π) / 3) ∈ ℝ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) | |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (⊤ → (abs‘(exp‘(i · ((2 · π) / 3)))) = 1) |
| 44 | 33, 43 | eqtrd 2765 | . . . . 5 ⊢ (⊤ → (abs‘(exp‘((i · (2 · π)) / 3))) = 1) |
| 45 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3))) |
| 46 | 45 | fveq2d 6865 | . . . . 5 ⊢ (⊤ → (abs‘𝑂) = (abs‘(exp‘((i · (2 · π)) / 3)))) |
| 47 | 1red 11182 | . . . . . 6 ⊢ (⊤ → 1 ∈ ℝ) | |
| 48 | 0le1 11708 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 49 | 48 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0 ≤ 1) |
| 50 | 47, 49 | absidd 15396 | . . . . 5 ⊢ (⊤ → (abs‘1) = 1) |
| 51 | 44, 46, 50 | 3eqtr4d 2775 | . . . 4 ⊢ (⊤ → (abs‘𝑂) = (abs‘1)) |
| 52 | 20 | subid1d 11529 | . . . . 5 ⊢ (⊤ → (𝑂 − 0) = 𝑂) |
| 53 | 52 | fveq2d 6865 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘𝑂)) |
| 54 | 23 | subid1d 11529 | . . . . 5 ⊢ (⊤ → (1 − 0) = 1) |
| 55 | 54 | fveq2d 6865 | . . . 4 ⊢ (⊤ → (abs‘(1 − 0)) = (abs‘1)) |
| 56 | 51, 53, 55 | 3eqtr4d 2775 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − 0)) = (abs‘(1 − 0))) |
| 57 | 20, 23 | subnegd 11547 | . . . . . 6 ⊢ (⊤ → (𝑂 − -1) = (𝑂 + 1)) |
| 58 | 20, 23 | addcld 11200 | . . . . . . 7 ⊢ (⊤ → (𝑂 + 1) ∈ ℂ) |
| 59 | 20 | sqcld 14116 | . . . . . . 7 ⊢ (⊤ → (𝑂↑2) ∈ ℂ) |
| 60 | 58, 59 | addcomd 11383 | . . . . . . . 8 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = ((𝑂↑2) + (𝑂 + 1))) |
| 61 | 6 | cos9thpiminplylem3 33781 | . . . . . . . . 9 ⊢ ((𝑂↑2) + (𝑂 + 1)) = 0 |
| 62 | 61 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → ((𝑂↑2) + (𝑂 + 1)) = 0) |
| 63 | 60, 62 | eqtrd 2765 | . . . . . . 7 ⊢ (⊤ → ((𝑂 + 1) + (𝑂↑2)) = 0) |
| 64 | addeq0 11608 | . . . . . . . 8 ⊢ (((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) → (((𝑂 + 1) + (𝑂↑2)) = 0 ↔ (𝑂 + 1) = -(𝑂↑2))) | |
| 65 | 64 | biimpa 476 | . . . . . . 7 ⊢ ((((𝑂 + 1) ∈ ℂ ∧ (𝑂↑2) ∈ ℂ) ∧ ((𝑂 + 1) + (𝑂↑2)) = 0) → (𝑂 + 1) = -(𝑂↑2)) |
| 66 | 58, 59, 63, 65 | syl21anc 837 | . . . . . 6 ⊢ (⊤ → (𝑂 + 1) = -(𝑂↑2)) |
| 67 | 57, 66 | eqtrd 2765 | . . . . 5 ⊢ (⊤ → (𝑂 − -1) = -(𝑂↑2)) |
| 68 | 67 | fveq2d 6865 | . . . 4 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘-(𝑂↑2))) |
| 69 | 59 | absnegd 15425 | . . . 4 ⊢ (⊤ → (abs‘-(𝑂↑2)) = (abs‘(𝑂↑2))) |
| 70 | 2nn0 12466 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 71 | 70 | a1i 11 | . . . . . 6 ⊢ (⊤ → 2 ∈ ℕ0) |
| 72 | 20, 71 | absexpd 15428 | . . . . 5 ⊢ (⊤ → (abs‘(𝑂↑2)) = ((abs‘𝑂)↑2)) |
| 73 | 46, 44 | eqtrd 2765 | . . . . . 6 ⊢ (⊤ → (abs‘𝑂) = 1) |
| 74 | 73 | oveq1d 7405 | . . . . 5 ⊢ (⊤ → ((abs‘𝑂)↑2) = (1↑2)) |
| 75 | sq1 14167 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 76 | 55, 50 | eqtrd 2765 | . . . . . 6 ⊢ (⊤ → (abs‘(1 − 0)) = 1) |
| 77 | 75, 76 | eqtr4id 2784 | . . . . 5 ⊢ (⊤ → (1↑2) = (abs‘(1 − 0))) |
| 78 | 72, 74, 77 | 3eqtrd 2769 | . . . 4 ⊢ (⊤ → (abs‘(𝑂↑2)) = (abs‘(1 − 0))) |
| 79 | 68, 69, 78 | 3eqtrd 2769 | . . 3 ⊢ (⊤ → (abs‘(𝑂 − -1)) = (abs‘(1 − 0))) |
| 80 | 2, 4, 2, 5, 4, 2, 20, 30, 56, 79 | constrcccl 33755 | . 2 ⊢ (⊤ → 𝑂 ∈ Constr) |
| 81 | 80 | mptru 1547 | 1 ⊢ 𝑂 ∈ Constr |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 ici 11077 + caddc 11078 · cmul 11080 ≤ cle 11216 − cmin 11412 -cneg 11413 / cdiv 11842 2c2 12248 3c3 12249 ℕ0cn0 12449 ↑cexp 14033 abscabs 15207 expce 16034 πcpi 16039 Constrcconstr 33726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-constr 33727 |
| This theorem is referenced by: cos9thpinconstr 33788 |
| Copyright terms: Public domain | W3C validator |