Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7358
ℂcc 11050 1c1 11053
+ caddc 11055 −
cmin 11386 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-ltxr 11195 df-sub 11388 |
This theorem is referenced by: nn0split
13557 nn0disj
13558 elfzom1elp1fzo1
13673 sqoddm1div8
14147 wrdlenccats1lenm1
14511 ccats1pfxeq
14603 ltoddhalfle
16244 pwp1fsum
16274 flodddiv4
16296 prmop1
16911 cayhamlem1
22218 2lgslem1c
26744 2lgslem3a
26747 wlklenvm1
28573 wwlknp
28791 wwlknlsw
28795 0enwwlksnge1
28812 wlkiswwlks1
28815 wspthsnwspthsnon
28864 wspthsnonn0vne
28865 elwspths2spth
28915 wwlksext2clwwlk
29004 numclwwlk2lem1lem
29289 numclwlk2lem2f
29324 poimirlem4
36085 poimirlem10
36091 poimirlem19
36100 poimirlem28
36109 sumnnodd
43878 iccpartgtprec
45619 fmtnom1nn
45731 fmtnorec1
45736 sfprmdvdsmersenne
45802 proththdlem
45812 41prothprmlem1
45816 dfodd6
45836 evenp1odd
45839 perfectALTVlem1
45920 altgsumbcALT
46436 fllog2
46661 nnpw2blen
46673 dig2nn1st
46698 nn0sumshdiglemA
46712 nn0sumshdiglemB
46713 aacllem
47255 |