Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1534
∈ wcel 2099 (class class class)co 7420
ℂcc 11137 1c1 11140
+ caddc 11142 −
cmin 11475 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906
ax-6 1964 ax-7 2004 ax-8 2101
ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-sub 11477 |
This theorem is referenced by: nn0split
13649 nn0disj
13650 elfzom1elp1fzo1
13765 sqoddm1div8
14238 wrdlenccats1lenm1
14605 ccats1pfxeq
14697 ltoddhalfle
16338 pwp1fsum
16368 flodddiv4
16390 prmop1
17007 cayhamlem1
22781 2lgslem1c
27339 2lgslem3a
27342 wlklenvm1
29449 wwlknp
29667 wwlknlsw
29671 0enwwlksnge1
29688 wlkiswwlks1
29691 wspthsnwspthsnon
29740 wspthsnonn0vne
29741 elwspths2spth
29791 wwlksext2clwwlk
29880 numclwwlk2lem1lem
30165 numclwlk2lem2f
30200 poimirlem4
37097 poimirlem10
37103 poimirlem19
37112 poimirlem28
37121 sumnnodd
45018 iccpartgtprec
46760 fmtnom1nn
46872 fmtnorec1
46877 sfprmdvdsmersenne
46943 proththdlem
46953 41prothprmlem1
46957 dfodd6
46977 evenp1odd
46980 perfectALTVlem1
47061 altgsumbcALT
47417 fllog2
47641 nnpw2blen
47653 dig2nn1st
47678 nn0sumshdiglemA
47692 nn0sumshdiglemB
47693 aacllem
48234 |