Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pncan1 | Structured version Visualization version GIF version |
Description: Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
Ref | Expression |
---|---|
pncan1 | ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
2 | 1cnd 10901 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
3 | 1, 2 | pncand 11263 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 |
This theorem is referenced by: nn0split 13300 nn0disj 13301 elfzom1elp1fzo1 13415 sqoddm1div8 13886 wrdlenccats1lenm1 14255 ccats1pfxeq 14355 ltoddhalfle 15998 pwp1fsum 16028 flodddiv4 16050 prmop1 16667 cayhamlem1 21923 2lgslem1c 26446 2lgslem3a 26449 wlklenvm1 27891 wwlknp 28109 wwlknlsw 28113 0enwwlksnge1 28130 wlkiswwlks1 28133 wspthsnwspthsnon 28182 wspthsnonn0vne 28183 elwspths2spth 28233 wwlksext2clwwlk 28322 numclwwlk2lem1lem 28607 numclwlk2lem2f 28642 poimirlem4 35708 poimirlem10 35714 poimirlem19 35723 poimirlem28 35732 sumnnodd 43061 iccpartgtprec 44760 fmtnom1nn 44872 fmtnorec1 44877 sfprmdvdsmersenne 44943 proththdlem 44953 41prothprmlem1 44957 dfodd6 44977 evenp1odd 44980 perfectALTVlem1 45061 altgsumbcALT 45577 fllog2 45802 nnpw2blen 45814 dig2nn1st 45839 nn0sumshdiglemA 45853 nn0sumshdiglemB 45854 aacllem 46391 |
Copyright terms: Public domain | W3C validator |