| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan1 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| pncan1 | ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 2 | 1cnd 11102 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2 | pncand 11468 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 1c1 11002 + caddc 11004 − cmin 11339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 |
| This theorem is referenced by: nn0split 13538 nn0disj 13539 elfzom1elp1fzo1 13662 sqoddm1div8 14145 wrdlenccats1lenm1 14525 ccats1pfxeq 14616 ltoddhalfle 16267 pwp1fsum 16297 flodddiv4 16321 prmop1 16945 psdpw 22080 cayhamlem1 22776 2lgslem1c 27326 2lgslem3a 27329 wlklenvm1 29595 wwlknp 29816 wwlknlsw 29820 0enwwlksnge1 29837 wlkiswwlks1 29840 wspthsnwspthsnon 29889 wspthsnonn0vne 29890 elwspths2spth 29940 wwlksext2clwwlk 30029 numclwwlk2lem1lem 30314 numclwlk2lem2f 30349 poimirlem4 37664 poimirlem10 37670 poimirlem19 37679 poimirlem28 37688 sumnnodd 45670 iccpartgtprec 47451 fmtnom1nn 47563 fmtnorec1 47568 sfprmdvdsmersenne 47634 proththdlem 47644 41prothprmlem1 47648 dfodd6 47668 evenp1odd 47671 perfectALTVlem1 47752 isubgr3stgrlem2 47998 gpgvtxedg0 48094 altgsumbcALT 48384 fllog2 48600 nnpw2blen 48612 dig2nn1st 48637 nn0sumshdiglemA 48651 nn0sumshdiglemB 48652 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |