| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan1 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| pncan1 | ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 2 | 1cnd 11230 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2 | pncand 11595 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 − cmin 11466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 |
| This theorem is referenced by: nn0split 13660 nn0disj 13661 elfzom1elp1fzo1 13783 sqoddm1div8 14261 wrdlenccats1lenm1 14640 ccats1pfxeq 14732 ltoddhalfle 16380 pwp1fsum 16410 flodddiv4 16434 prmop1 17058 psdpw 22108 cayhamlem1 22804 2lgslem1c 27356 2lgslem3a 27359 wlklenvm1 29602 wwlknp 29825 wwlknlsw 29829 0enwwlksnge1 29846 wlkiswwlks1 29849 wspthsnwspthsnon 29898 wspthsnonn0vne 29899 elwspths2spth 29949 wwlksext2clwwlk 30038 numclwwlk2lem1lem 30323 numclwlk2lem2f 30358 poimirlem4 37648 poimirlem10 37654 poimirlem19 37663 poimirlem28 37672 sumnnodd 45659 iccpartgtprec 47434 fmtnom1nn 47546 fmtnorec1 47551 sfprmdvdsmersenne 47617 proththdlem 47627 41prothprmlem1 47631 dfodd6 47651 evenp1odd 47654 perfectALTVlem1 47735 isubgr3stgrlem2 47979 gpgvtxedg0 48067 altgsumbcALT 48328 fllog2 48548 nnpw2blen 48560 dig2nn1st 48585 nn0sumshdiglemA 48599 nn0sumshdiglemB 48600 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |