Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pncan1 | Structured version Visualization version GIF version |
Description: Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
Ref | Expression |
---|---|
pncan1 | ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
2 | 1cnd 10970 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
3 | 1, 2 | pncand 11333 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 − cmin 11205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 |
This theorem is referenced by: nn0split 13371 nn0disj 13372 elfzom1elp1fzo1 13487 sqoddm1div8 13958 wrdlenccats1lenm1 14327 ccats1pfxeq 14427 ltoddhalfle 16070 pwp1fsum 16100 flodddiv4 16122 prmop1 16739 cayhamlem1 22015 2lgslem1c 26541 2lgslem3a 26544 wlklenvm1 27989 wwlknp 28208 wwlknlsw 28212 0enwwlksnge1 28229 wlkiswwlks1 28232 wspthsnwspthsnon 28281 wspthsnonn0vne 28282 elwspths2spth 28332 wwlksext2clwwlk 28421 numclwwlk2lem1lem 28706 numclwlk2lem2f 28741 poimirlem4 35781 poimirlem10 35787 poimirlem19 35796 poimirlem28 35805 sumnnodd 43171 iccpartgtprec 44872 fmtnom1nn 44984 fmtnorec1 44989 sfprmdvdsmersenne 45055 proththdlem 45065 41prothprmlem1 45069 dfodd6 45089 evenp1odd 45092 perfectALTVlem1 45173 altgsumbcALT 45689 fllog2 45914 nnpw2blen 45926 dig2nn1st 45951 nn0sumshdiglemA 45965 nn0sumshdiglemB 45966 aacllem 46505 |
Copyright terms: Public domain | W3C validator |