Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pncan1 | Structured version Visualization version GIF version |
Description: Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
Ref | Expression |
---|---|
pncan1 | ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
2 | 1cnd 11071 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
3 | 1, 2 | pncand 11434 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7337 ℂcc 10970 1c1 10973 + caddc 10975 − cmin 11306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-ltxr 11115 df-sub 11308 |
This theorem is referenced by: nn0split 13472 nn0disj 13473 elfzom1elp1fzo1 13588 sqoddm1div8 14059 wrdlenccats1lenm1 14426 ccats1pfxeq 14525 ltoddhalfle 16169 pwp1fsum 16199 flodddiv4 16221 prmop1 16836 cayhamlem1 22121 2lgslem1c 26647 2lgslem3a 26650 wlklenvm1 28278 wwlknp 28496 wwlknlsw 28500 0enwwlksnge1 28517 wlkiswwlks1 28520 wspthsnwspthsnon 28569 wspthsnonn0vne 28570 elwspths2spth 28620 wwlksext2clwwlk 28709 numclwwlk2lem1lem 28994 numclwlk2lem2f 29029 poimirlem4 35894 poimirlem10 35900 poimirlem19 35909 poimirlem28 35918 sumnnodd 43515 iccpartgtprec 45231 fmtnom1nn 45343 fmtnorec1 45348 sfprmdvdsmersenne 45414 proththdlem 45424 41prothprmlem1 45428 dfodd6 45448 evenp1odd 45451 perfectALTVlem1 45532 altgsumbcALT 46048 fllog2 46273 nnpw2blen 46285 dig2nn1st 46310 nn0sumshdiglemA 46324 nn0sumshdiglemB 46325 aacllem 46864 |
Copyright terms: Public domain | W3C validator |