| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan1 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| pncan1 | ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 2 | 1cnd 11176 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2 | pncand 11541 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 − cmin 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 |
| This theorem is referenced by: nn0split 13611 nn0disj 13612 elfzom1elp1fzo1 13735 sqoddm1div8 14215 wrdlenccats1lenm1 14594 ccats1pfxeq 14686 ltoddhalfle 16338 pwp1fsum 16368 flodddiv4 16392 prmop1 17016 psdpw 22064 cayhamlem1 22760 2lgslem1c 27311 2lgslem3a 27314 wlklenvm1 29557 wwlknp 29780 wwlknlsw 29784 0enwwlksnge1 29801 wlkiswwlks1 29804 wspthsnwspthsnon 29853 wspthsnonn0vne 29854 elwspths2spth 29904 wwlksext2clwwlk 29993 numclwwlk2lem1lem 30278 numclwlk2lem2f 30313 poimirlem4 37625 poimirlem10 37631 poimirlem19 37640 poimirlem28 37649 sumnnodd 45635 iccpartgtprec 47425 fmtnom1nn 47537 fmtnorec1 47542 sfprmdvdsmersenne 47608 proththdlem 47618 41prothprmlem1 47622 dfodd6 47642 evenp1odd 47645 perfectALTVlem1 47726 isubgr3stgrlem2 47970 gpgvtxedg0 48058 altgsumbcALT 48345 fllog2 48561 nnpw2blen 48573 dig2nn1st 48598 nn0sumshdiglemA 48612 nn0sumshdiglemB 48613 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |