Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1533
∈ wcel 2098 (class class class)co 7404
ℂcc 11107 1c1 11110
+ caddc 11112 −
cmin 11445 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-ltxr 11254 df-sub 11447 |
This theorem is referenced by: nn0split
13619 nn0disj
13620 elfzom1elp1fzo1
13735 sqoddm1div8
14209 wrdlenccats1lenm1
14576 ccats1pfxeq
14668 ltoddhalfle
16309 pwp1fsum
16339 flodddiv4
16361 prmop1
16978 cayhamlem1
22719 2lgslem1c
27277 2lgslem3a
27280 wlklenvm1
29384 wwlknp
29602 wwlknlsw
29606 0enwwlksnge1
29623 wlkiswwlks1
29626 wspthsnwspthsnon
29675 wspthsnonn0vne
29676 elwspths2spth
29726 wwlksext2clwwlk
29815 numclwwlk2lem1lem
30100 numclwlk2lem2f
30135 poimirlem4
37003 poimirlem10
37009 poimirlem19
37018 poimirlem28
37027 sumnnodd
44899 iccpartgtprec
46641 fmtnom1nn
46753 fmtnorec1
46758 sfprmdvdsmersenne
46824 proththdlem
46834 41prothprmlem1
46838 dfodd6
46858 evenp1odd
46861 perfectALTVlem1
46942 altgsumbcALT
47286 fllog2
47510 nnpw2blen
47522 dig2nn1st
47547 nn0sumshdiglemA
47561 nn0sumshdiglemB
47562 aacllem
48103 |