| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan1 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| pncan1 | ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 2 | 1cnd 11145 | . 2 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2 | pncand 11510 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 − cmin 11381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 |
| This theorem is referenced by: nn0split 13580 nn0disj 13581 elfzom1elp1fzo1 13704 sqoddm1div8 14184 wrdlenccats1lenm1 14563 ccats1pfxeq 14655 ltoddhalfle 16307 pwp1fsum 16337 flodddiv4 16361 prmop1 16985 psdpw 22033 cayhamlem1 22729 2lgslem1c 27280 2lgslem3a 27283 wlklenvm1 29525 wwlknp 29746 wwlknlsw 29750 0enwwlksnge1 29767 wlkiswwlks1 29770 wspthsnwspthsnon 29819 wspthsnonn0vne 29820 elwspths2spth 29870 wwlksext2clwwlk 29959 numclwwlk2lem1lem 30244 numclwlk2lem2f 30279 poimirlem4 37591 poimirlem10 37597 poimirlem19 37606 poimirlem28 37615 sumnnodd 45601 iccpartgtprec 47394 fmtnom1nn 47506 fmtnorec1 47511 sfprmdvdsmersenne 47577 proththdlem 47587 41prothprmlem1 47591 dfodd6 47611 evenp1odd 47614 perfectALTVlem1 47695 isubgr3stgrlem2 47939 gpgvtxedg0 48027 altgsumbcALT 48314 fllog2 48530 nnpw2blen 48542 dig2nn1st 48567 nn0sumshdiglemA 48581 nn0sumshdiglemB 48582 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |