Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
= wceq 1533 ∈
wcel 2098 (class class class)co 7426
ℂcc 11146 + caddc 11151 − cmin 11484 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-ltxr 11293 df-sub 11486 |
This theorem is referenced by: addeq0
11677 icoshftf1o
13493 iccf1o
13515 modmuladdnn0
13922 hashun3
14385 oddm1even
16329 oexpneg
16331 modremain
16394 hashdvds
16753 psgnunilem5
19463 icopnfcnv
24895 affineequiv4
26786 mcubic
26807 lgsvalmod
27277 2sqmod
27397 colinearalglem2
28746 wlklnwwlkln2lem
29721 eucrct2eupth
30083 ballotlem1c
34168 subfacp1lem1
34830 mblfinlem3
37173 mblfinlem4
37174 itg2addnclem2
37186 aks4d1p1p7
41585 aks4d1p1
41587 fperdvper
45354 fourierdlem19
45561 fmtnorec2lem
46929 fmtnorec4
46936 fmtnoprmfac1lem
46951 fmtnoprmfac1
46952 fmtnoprmfac2
46954 sfprmdvdsmersenne
46990 oexpnegALTV
47064 even3prm2
47106 sbgoldbst
47165 nnsgrpnmnd
47336 blennn0em1
47760 eenglngeehlnmlem1
47906 eenglngeehlnmlem2
47907 itscnhlc0xyqsol
47934 itschlc0xyqsol1
47935 |