MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subadd2d Structured version   Visualization version   GIF version

Theorem subadd2d 11639
Description: Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subadd2d (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴))

Proof of Theorem subadd2d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subadd2 11512 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  (class class class)co 7431  cc 11153   + caddc 11158  cmin 11492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494
This theorem is referenced by:  addeq0  11686  icoshftf1o  13514  iccf1o  13536  modmuladdnn0  13956  hashun3  14423  oddm1even  16380  oexpneg  16382  modremain  16445  hashdvds  16812  psgnunilem5  19512  icopnfcnv  24973  affineequiv4  26869  mcubic  26890  lgsvalmod  27360  2sqmod  27480  colinearalglem2  28922  wlklnwwlkln2lem  29902  eucrct2eupth  30264  ballotlem1c  34510  subfacp1lem1  35184  mblfinlem3  37666  mblfinlem4  37667  itg2addnclem2  37679  aks4d1p1p7  42075  aks4d1p1  42077  fperdvper  45934  fourierdlem19  46141  fmtnorec2lem  47529  fmtnorec4  47536  fmtnoprmfac1lem  47551  fmtnoprmfac1  47552  fmtnoprmfac2  47554  sfprmdvdsmersenne  47590  oexpnegALTV  47664  even3prm2  47706  sbgoldbst  47765  nnsgrpnmnd  48094  blennn0em1  48512  eenglngeehlnmlem1  48658  eenglngeehlnmlem2  48659  itscnhlc0xyqsol  48686  itschlc0xyqsol1  48687
  Copyright terms: Public domain W3C validator