Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsqrtcl Structured version   Visualization version   GIF version

Theorem constrsqrtcl 33742
Description: Constructible numbers are closed under taking the square root. This is not generally the case for the cubic root operation, see 2sqr3nconstr 33744. Item (5) of Theorem 7.10 of [Stewart] p. 96 (Proposed by Saveliy Skresanov, 3-Nov-2025.) (Contributed by Thierry Arnoux, 6-Nov-2025.)
Hypothesis
Ref Expression
constrabscl.1 (𝜑𝑋 ∈ Constr)
Assertion
Ref Expression
constrsqrtcl (𝜑 → (√‘𝑋) ∈ Constr)

Proof of Theorem constrsqrtcl
StepHypRef Expression
1 fveq2 6840 . . . . 5 (𝑋 = 0 → (√‘𝑋) = (√‘0))
2 sqrt0 15183 . . . . 5 (√‘0) = 0
31, 2eqtrdi 2780 . . . 4 (𝑋 = 0 → (√‘𝑋) = 0)
4 0zd 12517 . . . . 5 (𝑋 = 0 → 0 ∈ ℤ)
54zconstr 33727 . . . 4 (𝑋 = 0 → 0 ∈ Constr)
63, 5eqeltrd 2828 . . 3 (𝑋 = 0 → (√‘𝑋) ∈ Constr)
76adantl 481 . 2 ((𝜑𝑋 = 0) → (√‘𝑋) ∈ Constr)
8 constrabscl.1 . . . . . . . . . 10 (𝜑𝑋 ∈ Constr)
98constrcn 33723 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
109adantr 480 . . . . . . . 8 ((𝜑 ∧ -𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
1110negnegd 11500 . . . . . . 7 ((𝜑 ∧ -𝑋 ∈ ℝ+) → --𝑋 = 𝑋)
1211fveq2d 6844 . . . . . 6 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘--𝑋) = (√‘𝑋))
13 simpr 484 . . . . . . . 8 ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈ ℝ+)
1413rpred 12971 . . . . . . 7 ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈ ℝ)
1513rpge0d 12975 . . . . . . 7 ((𝜑 ∧ -𝑋 ∈ ℝ+) → 0 ≤ -𝑋)
1614, 15sqrtnegd 15364 . . . . . 6 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘--𝑋) = (i · (√‘-𝑋)))
1712, 16eqtr3d 2766 . . . . 5 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘𝑋) = (i · (√‘-𝑋)))
18 iconstr 33729 . . . . . . 7 i ∈ Constr
1918a1i 11 . . . . . 6 ((𝜑 ∧ -𝑋 ∈ ℝ+) → i ∈ Constr)
208adantr 480 . . . . . . . 8 ((𝜑 ∧ -𝑋 ∈ ℝ+) → 𝑋 ∈ Constr)
2120constrnegcl 33726 . . . . . . 7 ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈ Constr)
2221, 14, 15constrresqrtcl 33740 . . . . . 6 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘-𝑋) ∈ Constr)
2319, 22constrmulcl 33734 . . . . 5 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (i · (√‘-𝑋)) ∈ Constr)
2417, 23eqeltrd 2828 . . . 4 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘𝑋) ∈ Constr)
2524adantlr 715 . . 3 (((𝜑𝑋 ≠ 0) ∧ -𝑋 ∈ ℝ+) → (√‘𝑋) ∈ Constr)
269ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
2726abscld 15381 . . . . . . . 8 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘𝑋) ∈ ℝ)
2827recnd 11178 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘𝑋) ∈ ℂ)
2928sqrtcld 15382 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (√‘(abs‘𝑋)) ∈ ℂ)
3028, 26addcld 11169 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((abs‘𝑋) + 𝑋) ∈ ℂ)
3130abscld 15381 . . . . . . . 8 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘((abs‘𝑋) + 𝑋)) ∈ ℝ)
3231recnd 11178 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘((abs‘𝑋) + 𝑋)) ∈ ℂ)
339ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 𝑋 ∈ ℂ)
349abscld 15381 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘𝑋) ∈ ℝ)
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) ∈ ℝ)
3635recnd 11178 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) ∈ ℂ)
37 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → ((abs‘𝑋) + 𝑋) = 0)
38 addeq0 11577 . . . . . . . . . . . . . . . . . . 19 (((abs‘𝑋) ∈ ℂ ∧ 𝑋 ∈ ℂ) → (((abs‘𝑋) + 𝑋) = 0 ↔ (abs‘𝑋) = -𝑋))
3938biimpa 476 . . . . . . . . . . . . . . . . . 18 ((((abs‘𝑋) ∈ ℂ ∧ 𝑋 ∈ ℂ) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) = -𝑋)
4036, 33, 37, 39syl21anc 837 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) = -𝑋)
4140, 35eqeltrrd 2829 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → -𝑋 ∈ ℝ)
4233, 41negrebd 11508 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 𝑋 ∈ ℝ)
43 0red 11153 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 0 ∈ ℝ)
44 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → ¬ -𝑋 ∈ ℝ+)
45 negelrp 12962 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ → (-𝑋 ∈ ℝ+𝑋 < 0))
4645notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℝ → (¬ -𝑋 ∈ ℝ+ ↔ ¬ 𝑋 < 0))
4746biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℝ ∧ ¬ -𝑋 ∈ ℝ+) → ¬ 𝑋 < 0)
4842, 44, 47syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → ¬ 𝑋 < 0)
4943, 42, 48nltled 11300 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 0 ≤ 𝑋)
5042, 49absidd 15365 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) = 𝑋)
5150, 40eqtr3d 2766 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 𝑋 = -𝑋)
5233, 51eqnegad 11880 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 𝑋 = 0)
5352ex 412 . . . . . . . . . . 11 ((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) → (((abs‘𝑋) + 𝑋) = 0 → 𝑋 = 0))
5453necon3d 2946 . . . . . . . . . 10 ((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) → (𝑋 ≠ 0 → ((abs‘𝑋) + 𝑋) ≠ 0))
5554impancom 451 . . . . . . . . 9 ((𝜑𝑋 ≠ 0) → (¬ -𝑋 ∈ ℝ+ → ((abs‘𝑋) + 𝑋) ≠ 0))
5655imp 406 . . . . . . . 8 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((abs‘𝑋) + 𝑋) ≠ 0)
5730, 56absne0d 15392 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘((abs‘𝑋) + 𝑋)) ≠ 0)
5830, 32, 57divcld 11934 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))) ∈ ℂ)
5929, 58mulcld 11170 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋)))) ∈ ℂ)
60 eqid 2729 . . . . . . . 8 ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋)))) = ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))
6160sqreulem 15302 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ((abs‘𝑋) + 𝑋) ≠ 0) → ((((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))↑2) = 𝑋 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∧ (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∉ ℝ+))
6226, 56, 61syl2anc 584 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))↑2) = 𝑋 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∧ (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∉ ℝ+))
6362simp1d 1142 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))↑2) = 𝑋)
6462simp2d 1143 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → 0 ≤ (ℜ‘((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))))
6562simp3d 1144 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∉ ℝ+)
66 df-nel 3030 . . . . . 6 ((i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∉ ℝ+ ↔ ¬ (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∈ ℝ+)
6765, 66sylib 218 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ¬ (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∈ ℝ+)
6859, 26, 63, 64, 67eqsqrtd 15310 . . . 4 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋)))) = (√‘𝑋))
698ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → 𝑋 ∈ Constr)
7069constrabscl 33741 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘𝑋) ∈ Constr)
7126absge0d 15389 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → 0 ≤ (abs‘𝑋))
7270, 27, 71constrresqrtcl 33740 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (√‘(abs‘𝑋)) ∈ Constr)
7370, 69constraddcl 33725 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((abs‘𝑋) + 𝑋) ∈ Constr)
7473, 56constrdircl 33728 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))) ∈ Constr)
7572, 74constrmulcl 33734 . . . 4 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋)))) ∈ Constr)
7668, 75eqeltrrd 2829 . . 3 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (√‘𝑋) ∈ Constr)
7725, 76pm2.61dan 812 . 2 ((𝜑𝑋 ≠ 0) → (√‘𝑋) ∈ Constr)
787, 77pm2.61dane 3012 1 (𝜑 → (√‘𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  ici 11046   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  -cneg 11382   / cdiv 11811  2c2 12217  +crp 12927  cexp 14002  cre 15039  csqrt 15175  abscabs 15176  Constrcconstr 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-constr 33693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator