Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsqrtcl Structured version   Visualization version   GIF version

Theorem constrsqrtcl 33775
Description: Constructible numbers are closed under taking the square root. This is not generally the case for the cubic root operation, see 2sqr3nconstr 33777. Item (5) of Theorem 7.10 of [Stewart] p. 96 (Proposed by Saveliy Skresanov, 3-Nov-2025.) (Contributed by Thierry Arnoux, 6-Nov-2025.)
Hypothesis
Ref Expression
constrabscl.1 (𝜑𝑋 ∈ Constr)
Assertion
Ref Expression
constrsqrtcl (𝜑 → (√‘𝑋) ∈ Constr)

Proof of Theorem constrsqrtcl
StepHypRef Expression
1 fveq2 6860 . . . . 5 (𝑋 = 0 → (√‘𝑋) = (√‘0))
2 sqrt0 15213 . . . . 5 (√‘0) = 0
31, 2eqtrdi 2781 . . . 4 (𝑋 = 0 → (√‘𝑋) = 0)
4 0zd 12547 . . . . 5 (𝑋 = 0 → 0 ∈ ℤ)
54zconstr 33760 . . . 4 (𝑋 = 0 → 0 ∈ Constr)
63, 5eqeltrd 2829 . . 3 (𝑋 = 0 → (√‘𝑋) ∈ Constr)
76adantl 481 . 2 ((𝜑𝑋 = 0) → (√‘𝑋) ∈ Constr)
8 constrabscl.1 . . . . . . . . . 10 (𝜑𝑋 ∈ Constr)
98constrcn 33756 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
109adantr 480 . . . . . . . 8 ((𝜑 ∧ -𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
1110negnegd 11530 . . . . . . 7 ((𝜑 ∧ -𝑋 ∈ ℝ+) → --𝑋 = 𝑋)
1211fveq2d 6864 . . . . . 6 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘--𝑋) = (√‘𝑋))
13 simpr 484 . . . . . . . 8 ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈ ℝ+)
1413rpred 13001 . . . . . . 7 ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈ ℝ)
1513rpge0d 13005 . . . . . . 7 ((𝜑 ∧ -𝑋 ∈ ℝ+) → 0 ≤ -𝑋)
1614, 15sqrtnegd 15394 . . . . . 6 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘--𝑋) = (i · (√‘-𝑋)))
1712, 16eqtr3d 2767 . . . . 5 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘𝑋) = (i · (√‘-𝑋)))
18 iconstr 33762 . . . . . . 7 i ∈ Constr
1918a1i 11 . . . . . 6 ((𝜑 ∧ -𝑋 ∈ ℝ+) → i ∈ Constr)
208adantr 480 . . . . . . . 8 ((𝜑 ∧ -𝑋 ∈ ℝ+) → 𝑋 ∈ Constr)
2120constrnegcl 33759 . . . . . . 7 ((𝜑 ∧ -𝑋 ∈ ℝ+) → -𝑋 ∈ Constr)
2221, 14, 15constrresqrtcl 33773 . . . . . 6 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘-𝑋) ∈ Constr)
2319, 22constrmulcl 33767 . . . . 5 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (i · (√‘-𝑋)) ∈ Constr)
2417, 23eqeltrd 2829 . . . 4 ((𝜑 ∧ -𝑋 ∈ ℝ+) → (√‘𝑋) ∈ Constr)
2524adantlr 715 . . 3 (((𝜑𝑋 ≠ 0) ∧ -𝑋 ∈ ℝ+) → (√‘𝑋) ∈ Constr)
269ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
2726abscld 15411 . . . . . . . 8 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘𝑋) ∈ ℝ)
2827recnd 11208 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘𝑋) ∈ ℂ)
2928sqrtcld 15412 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (√‘(abs‘𝑋)) ∈ ℂ)
3028, 26addcld 11199 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((abs‘𝑋) + 𝑋) ∈ ℂ)
3130abscld 15411 . . . . . . . 8 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘((abs‘𝑋) + 𝑋)) ∈ ℝ)
3231recnd 11208 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘((abs‘𝑋) + 𝑋)) ∈ ℂ)
339ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 𝑋 ∈ ℂ)
349abscld 15411 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘𝑋) ∈ ℝ)
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) ∈ ℝ)
3635recnd 11208 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) ∈ ℂ)
37 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → ((abs‘𝑋) + 𝑋) = 0)
38 addeq0 11607 . . . . . . . . . . . . . . . . . . 19 (((abs‘𝑋) ∈ ℂ ∧ 𝑋 ∈ ℂ) → (((abs‘𝑋) + 𝑋) = 0 ↔ (abs‘𝑋) = -𝑋))
3938biimpa 476 . . . . . . . . . . . . . . . . . 18 ((((abs‘𝑋) ∈ ℂ ∧ 𝑋 ∈ ℂ) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) = -𝑋)
4036, 33, 37, 39syl21anc 837 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) = -𝑋)
4140, 35eqeltrrd 2830 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → -𝑋 ∈ ℝ)
4233, 41negrebd 11538 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 𝑋 ∈ ℝ)
43 0red 11183 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 0 ∈ ℝ)
44 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → ¬ -𝑋 ∈ ℝ+)
45 negelrp 12992 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ → (-𝑋 ∈ ℝ+𝑋 < 0))
4645notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℝ → (¬ -𝑋 ∈ ℝ+ ↔ ¬ 𝑋 < 0))
4746biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℝ ∧ ¬ -𝑋 ∈ ℝ+) → ¬ 𝑋 < 0)
4842, 44, 47syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → ¬ 𝑋 < 0)
4943, 42, 48nltled 11330 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 0 ≤ 𝑋)
5042, 49absidd 15395 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → (abs‘𝑋) = 𝑋)
5150, 40eqtr3d 2767 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 𝑋 = -𝑋)
5233, 51eqnegad 11910 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) ∧ ((abs‘𝑋) + 𝑋) = 0) → 𝑋 = 0)
5352ex 412 . . . . . . . . . . 11 ((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) → (((abs‘𝑋) + 𝑋) = 0 → 𝑋 = 0))
5453necon3d 2947 . . . . . . . . . 10 ((𝜑 ∧ ¬ -𝑋 ∈ ℝ+) → (𝑋 ≠ 0 → ((abs‘𝑋) + 𝑋) ≠ 0))
5554impancom 451 . . . . . . . . 9 ((𝜑𝑋 ≠ 0) → (¬ -𝑋 ∈ ℝ+ → ((abs‘𝑋) + 𝑋) ≠ 0))
5655imp 406 . . . . . . . 8 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((abs‘𝑋) + 𝑋) ≠ 0)
5730, 56absne0d 15422 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘((abs‘𝑋) + 𝑋)) ≠ 0)
5830, 32, 57divcld 11964 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))) ∈ ℂ)
5929, 58mulcld 11200 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋)))) ∈ ℂ)
60 eqid 2730 . . . . . . . 8 ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋)))) = ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))
6160sqreulem 15332 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ((abs‘𝑋) + 𝑋) ≠ 0) → ((((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))↑2) = 𝑋 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∧ (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∉ ℝ+))
6226, 56, 61syl2anc 584 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))↑2) = 𝑋 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∧ (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∉ ℝ+))
6362simp1d 1142 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))↑2) = 𝑋)
6462simp2d 1143 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → 0 ≤ (ℜ‘((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))))
6562simp3d 1144 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∉ ℝ+)
66 df-nel 3031 . . . . . 6 ((i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∉ ℝ+ ↔ ¬ (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∈ ℝ+)
6765, 66sylib 218 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ¬ (i · ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))))) ∈ ℝ+)
6859, 26, 63, 64, 67eqsqrtd 15340 . . . 4 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋)))) = (√‘𝑋))
698ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → 𝑋 ∈ Constr)
7069constrabscl 33774 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (abs‘𝑋) ∈ Constr)
7126absge0d 15419 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → 0 ≤ (abs‘𝑋))
7270, 27, 71constrresqrtcl 33773 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (√‘(abs‘𝑋)) ∈ Constr)
7370, 69constraddcl 33758 . . . . . 6 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((abs‘𝑋) + 𝑋) ∈ Constr)
7473, 56constrdircl 33761 . . . . 5 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋))) ∈ Constr)
7572, 74constrmulcl 33767 . . . 4 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → ((√‘(abs‘𝑋)) · (((abs‘𝑋) + 𝑋) / (abs‘((abs‘𝑋) + 𝑋)))) ∈ Constr)
7668, 75eqeltrrd 2830 . . 3 (((𝜑𝑋 ≠ 0) ∧ ¬ -𝑋 ∈ ℝ+) → (√‘𝑋) ∈ Constr)
7725, 76pm2.61dan 812 . 2 ((𝜑𝑋 ≠ 0) → (√‘𝑋) ∈ Constr)
787, 77pm2.61dane 3013 1 (𝜑 → (√‘𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wnel 3030   class class class wbr 5109  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  ici 11076   + caddc 11077   · cmul 11079   < clt 11214  cle 11215  -cneg 11412   / cdiv 11841  2c2 12242  +crp 12957  cexp 14032  cre 15069  csqrt 15205  abscabs 15206  Constrcconstr 33725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-fac 14245  df-bc 14274  df-hash 14302  df-shft 15039  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-sum 15659  df-ef 16039  df-sin 16041  df-cos 16042  df-pi 16044  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-limc 25773  df-dv 25774  df-log 26471  df-constr 33726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator