| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpiminplylem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for cos9thpiminply 33771. (Contributed by Thierry Arnoux, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpiminplylem3.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| cos9thpiminplylem4.2 | ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) |
| Ref | Expression |
|---|---|
| cos9thpiminplylem4 | ⊢ ((𝑍↑6) + (𝑍↑3)) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cos9thpiminplylem4.2 | . . . . . 6 ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) | |
| 2 | cos9thpiminplylem3.1 | . . . . . . . 8 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 3 | ax-icn 11103 | . . . . . . . . . . 11 ⊢ i ∈ ℂ | |
| 4 | 2cn 12237 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℂ | |
| 5 | picn 26400 | . . . . . . . . . . . 12 ⊢ π ∈ ℂ | |
| 6 | 4, 5 | mulcli 11157 | . . . . . . . . . . 11 ⊢ (2 · π) ∈ ℂ |
| 7 | 3, 6 | mulcli 11157 | . . . . . . . . . 10 ⊢ (i · (2 · π)) ∈ ℂ |
| 8 | 3cn 12243 | . . . . . . . . . 10 ⊢ 3 ∈ ℂ | |
| 9 | 3ne0 12268 | . . . . . . . . . 10 ⊢ 3 ≠ 0 | |
| 10 | 7, 8, 9 | divcli 11900 | . . . . . . . . 9 ⊢ ((i · (2 · π)) / 3) ∈ ℂ |
| 11 | efcl 16024 | . . . . . . . . 9 ⊢ (((i · (2 · π)) / 3) ∈ ℂ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (exp‘((i · (2 · π)) / 3)) ∈ ℂ |
| 13 | 2, 12 | eqeltri 2824 | . . . . . . 7 ⊢ 𝑂 ∈ ℂ |
| 14 | 8, 9 | reccli 11888 | . . . . . . 7 ⊢ (1 / 3) ∈ ℂ |
| 15 | cxpcl 26616 | . . . . . . 7 ⊢ ((𝑂 ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (𝑂↑𝑐(1 / 3)) ∈ ℂ) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . 6 ⊢ (𝑂↑𝑐(1 / 3)) ∈ ℂ |
| 17 | 1, 16 | eqeltri 2824 | . . . . 5 ⊢ 𝑍 ∈ ℂ |
| 18 | 3nn0 12436 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 19 | 2nn0 12435 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 20 | expmul 14048 | . . . . 5 ⊢ ((𝑍 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (𝑍↑(3 · 2)) = ((𝑍↑3)↑2)) | |
| 21 | 17, 18, 19, 20 | mp3an 1463 | . . . 4 ⊢ (𝑍↑(3 · 2)) = ((𝑍↑3)↑2) |
| 22 | 3t2e6 12323 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 23 | 22 | oveq2i 7380 | . . . 4 ⊢ (𝑍↑(3 · 2)) = (𝑍↑6) |
| 24 | 1 | oveq1i 7379 | . . . . . . 7 ⊢ (𝑍↑3) = ((𝑂↑𝑐(1 / 3))↑3) |
| 25 | cxpmul2 26631 | . . . . . . . 8 ⊢ ((𝑂 ∈ ℂ ∧ (1 / 3) ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑂↑𝑐((1 / 3) · 3)) = ((𝑂↑𝑐(1 / 3))↑3)) | |
| 26 | 13, 14, 18, 25 | mp3an 1463 | . . . . . . 7 ⊢ (𝑂↑𝑐((1 / 3) · 3)) = ((𝑂↑𝑐(1 / 3))↑3) |
| 27 | 24, 26 | eqtr4i 2755 | . . . . . 6 ⊢ (𝑍↑3) = (𝑂↑𝑐((1 / 3) · 3)) |
| 28 | ax-1cn 11102 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 29 | 28, 8, 9 | divcan1i 11902 | . . . . . . 7 ⊢ ((1 / 3) · 3) = 1 |
| 30 | 29 | oveq2i 7380 | . . . . . 6 ⊢ (𝑂↑𝑐((1 / 3) · 3)) = (𝑂↑𝑐1) |
| 31 | cxp1 26613 | . . . . . . 7 ⊢ (𝑂 ∈ ℂ → (𝑂↑𝑐1) = 𝑂) | |
| 32 | 13, 31 | ax-mp 5 | . . . . . 6 ⊢ (𝑂↑𝑐1) = 𝑂 |
| 33 | 27, 30, 32 | 3eqtri 2756 | . . . . 5 ⊢ (𝑍↑3) = 𝑂 |
| 34 | 33 | oveq1i 7379 | . . . 4 ⊢ ((𝑍↑3)↑2) = (𝑂↑2) |
| 35 | 21, 23, 34 | 3eqtr3i 2760 | . . 3 ⊢ (𝑍↑6) = (𝑂↑2) |
| 36 | 35, 33 | oveq12i 7381 | . 2 ⊢ ((𝑍↑6) + (𝑍↑3)) = ((𝑂↑2) + 𝑂) |
| 37 | 13 | sqcli 14122 | . . . . 5 ⊢ (𝑂↑2) ∈ ℂ |
| 38 | 37, 13 | addcli 11156 | . . . 4 ⊢ ((𝑂↑2) + 𝑂) ∈ ℂ |
| 39 | 38, 28 | pm3.2i 470 | . . 3 ⊢ (((𝑂↑2) + 𝑂) ∈ ℂ ∧ 1 ∈ ℂ) |
| 40 | 37, 13, 28 | addassi 11160 | . . . 4 ⊢ (((𝑂↑2) + 𝑂) + 1) = ((𝑂↑2) + (𝑂 + 1)) |
| 41 | 2 | cos9thpiminplylem3 33767 | . . . 4 ⊢ ((𝑂↑2) + (𝑂 + 1)) = 0 |
| 42 | 40, 41 | eqtri 2752 | . . 3 ⊢ (((𝑂↑2) + 𝑂) + 1) = 0 |
| 43 | addeq0 11577 | . . . 4 ⊢ ((((𝑂↑2) + 𝑂) ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝑂↑2) + 𝑂) + 1) = 0 ↔ ((𝑂↑2) + 𝑂) = -1)) | |
| 44 | 43 | biimpa 476 | . . 3 ⊢ (((((𝑂↑2) + 𝑂) ∈ ℂ ∧ 1 ∈ ℂ) ∧ (((𝑂↑2) + 𝑂) + 1) = 0) → ((𝑂↑2) + 𝑂) = -1) |
| 45 | 39, 42, 44 | mp2an 692 | . 2 ⊢ ((𝑂↑2) + 𝑂) = -1 |
| 46 | 36, 45 | eqtri 2752 | 1 ⊢ ((𝑍↑6) + (𝑍↑3)) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 -cneg 11382 / cdiv 11811 2c2 12217 3c3 12218 6c6 12221 ℕ0cn0 12418 ↑cexp 14002 expce 16003 πcpi 16008 ↑𝑐ccxp 26497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-limc 25800 df-dv 25801 df-log 26498 df-cxp 26499 |
| This theorem is referenced by: cos9thpiminplylem5 33769 |
| Copyright terms: Public domain | W3C validator |