| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adds32d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| addsassd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| addsassd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| addsassd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| Ref | Expression |
|---|---|
| adds32d | ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((𝐴 +s 𝐶) +s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsassd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | addsassd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | 1, 2 | addscomd 27911 | . . 3 ⊢ (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) |
| 4 | 3 | oveq2d 7368 | . 2 ⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = (𝐴 +s (𝐶 +s 𝐵))) |
| 5 | addsassd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 6 | 5, 1, 2 | addsassd 27950 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = (𝐴 +s (𝐵 +s 𝐶))) |
| 7 | 5, 2, 1 | addsassd 27950 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐶) +s 𝐵) = (𝐴 +s (𝐶 +s 𝐵))) |
| 8 | 4, 6, 7 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((𝐴 +s 𝐶) +s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 No csur 27579 +s cadds 27903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-nadd 8587 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec2 27893 df-adds 27904 |
| This theorem is referenced by: adds4d 27953 subadds 28011 addsubsd 28023 sltsubsubbd 28024 peano5uzs 28329 readdscl 28402 |
| Copyright terms: Public domain | W3C validator |