| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adds32d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| addsassd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| addsassd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| addsassd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| Ref | Expression |
|---|---|
| adds32d | ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((𝐴 +s 𝐶) +s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsassd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | addsassd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | 1, 2 | addscomd 27903 | . . 3 ⊢ (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) |
| 4 | 3 | oveq2d 7415 | . 2 ⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = (𝐴 +s (𝐶 +s 𝐵))) |
| 5 | addsassd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 6 | 5, 1, 2 | addsassd 27942 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = (𝐴 +s (𝐵 +s 𝐶))) |
| 7 | 5, 2, 1 | addsassd 27942 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐶) +s 𝐵) = (𝐴 +s (𝐶 +s 𝐵))) |
| 8 | 4, 6, 7 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((𝐴 +s 𝐶) +s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7399 No csur 27587 +s cadds 27895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-1o 8474 df-2o 8475 df-nadd 8672 df-no 27590 df-slt 27591 df-bday 27592 df-sle 27693 df-sslt 27729 df-scut 27731 df-0s 27772 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec2 27885 df-adds 27896 |
| This theorem is referenced by: adds4d 27945 subadds 28003 addsubsd 28015 sltsubsubbd 28016 peano5uzs 28293 readdscl 28334 |
| Copyright terms: Public domain | W3C validator |