| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addscomd | Structured version Visualization version GIF version | ||
| Description: Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| addscomd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| addscomd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| addscomd | ⊢ (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscomd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | addscomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | addscom 27954 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7414 No csur 27639 +s cadds 27947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-1o 8489 df-2o 8490 df-no 27642 df-slt 27643 df-bday 27644 df-sslt 27781 df-scut 27783 df-made 27841 df-old 27842 df-left 27844 df-right 27845 df-norec2 27937 df-adds 27948 |
| This theorem is referenced by: addslid 27956 addsproplem2 27958 addsproplem4 27960 addsproplem5 27961 addsproplem6 27962 adds32d 27995 adds12d 27996 adds42d 27998 addsbday 28005 negnegs 28031 npcans 28060 negsubsdi2d 28065 sltsubsubbd 28068 sltsubadd2d 28075 sltaddsub2d 28077 mulsproplem12 28108 mulscom 28120 addsdilem3 28134 addsdilem4 28135 mulsasslem3 28146 mulsunif2lem 28150 elzn0s 28339 zscut 28348 halfcut 28371 |
| Copyright terms: Public domain | W3C validator |