| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addscomd | Structured version Visualization version GIF version | ||
| Description: Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| addscomd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| addscomd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| addscomd | ⊢ (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscomd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | addscomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | addscom 27910 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 No csur 27579 +s cadds 27903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec2 27893 df-adds 27904 |
| This theorem is referenced by: addslid 27912 addsproplem2 27914 addsproplem4 27916 addsproplem5 27917 addsproplem6 27918 adds32d 27951 adds12d 27952 adds42d 27954 addsbday 27961 negnegs 27987 npcans 28016 negsubsdi2d 28021 sltsubsubbd 28024 sltsubadd2d 28031 sltaddsub2d 28033 mulsproplem12 28067 mulscom 28079 addsdilem3 28093 addsdilem4 28094 mulsasslem3 28105 mulsunif2lem 28109 elzn0s 28323 zscut 28332 zsoring 28333 halfcut 28379 pw2cut2 28383 zs12addscl 28388 |
| Copyright terms: Public domain | W3C validator |