MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addscomd Structured version   Visualization version   GIF version

Theorem addscomd 27908
Description: Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
Hypotheses
Ref Expression
addscomd.1 (𝜑𝐴 No )
addscomd.2 (𝜑𝐵 No )
Assertion
Ref Expression
addscomd (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))

Proof of Theorem addscomd
StepHypRef Expression
1 addscomd.1 . 2 (𝜑𝐴 No )
2 addscomd.2 . 2 (𝜑𝐵 No )
3 addscom 27907 . 2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346   No csur 27576   +s cadds 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27579  df-slt 27580  df-bday 27581  df-sslt 27719  df-scut 27721  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec2 27890  df-adds 27901
This theorem is referenced by:  addslid  27909  addsproplem2  27911  addsproplem4  27913  addsproplem5  27914  addsproplem6  27915  adds32d  27948  adds12d  27949  adds42d  27951  addsbday  27958  negnegs  27984  npcans  28013  negsubsdi2d  28018  sltsubsubbd  28021  sltsubadd2d  28028  sltaddsub2d  28030  mulsproplem12  28064  mulscom  28076  addsdilem3  28090  addsdilem4  28091  mulsasslem3  28102  mulsunif2lem  28106  elzn0s  28320  zscut  28329  zsoring  28330  halfcut  28376  pw2cut2  28380  zs12addscl  28385
  Copyright terms: Public domain W3C validator