MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsdi Structured version   Visualization version   GIF version

Theorem negsdi 28008
Description: Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.)
Assertion
Ref Expression
negsdi ((𝐴 No 𝐵 No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us𝐴) +s ( -us𝐵)))

Proof of Theorem negsdi
StepHypRef Expression
1 addscl 27944 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) ∈ No )
21negsidd 28000 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = 0s )
3 negsid 27999 . . . . 5 (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )
4 negsid 27999 . . . . 5 (𝐵 No → (𝐵 +s ( -us𝐵)) = 0s )
53, 4oveqan12d 7438 . . . 4 ((𝐴 No 𝐵 No ) → ((𝐴 +s ( -us𝐴)) +s (𝐵 +s ( -us𝐵))) = ( 0s +s 0s ))
6 0sno 27805 . . . . 5 0s No
7 addslid 27931 . . . . 5 ( 0s No → ( 0s +s 0s ) = 0s )
86, 7ax-mp 5 . . . 4 ( 0s +s 0s ) = 0s
95, 8eqtr2di 2782 . . 3 ((𝐴 No 𝐵 No ) → 0s = ((𝐴 +s ( -us𝐴)) +s (𝐵 +s ( -us𝐵))))
10 simpl 481 . . . 4 ((𝐴 No 𝐵 No ) → 𝐴 No )
1110negscld 27995 . . . 4 ((𝐴 No 𝐵 No ) → ( -us𝐴) ∈ No )
12 simpr 483 . . . 4 ((𝐴 No 𝐵 No ) → 𝐵 No )
1312negscld 27995 . . . 4 ((𝐴 No 𝐵 No ) → ( -us𝐵) ∈ No )
1410, 11, 12, 13adds4d 27972 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 +s ( -us𝐴)) +s (𝐵 +s ( -us𝐵))) = ((𝐴 +s 𝐵) +s (( -us𝐴) +s ( -us𝐵))))
152, 9, 143eqtrd 2769 . 2 ((𝐴 No 𝐵 No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us𝐴) +s ( -us𝐵))))
161negscld 27995 . . 3 ((𝐴 No 𝐵 No ) → ( -us ‘(𝐴 +s 𝐵)) ∈ No )
17 negscl 27994 . . . 4 (𝐴 No → ( -us𝐴) ∈ No )
18 negscl 27994 . . . 4 (𝐵 No → ( -us𝐵) ∈ No )
19 addscl 27944 . . . 4 ((( -us𝐴) ∈ No ∧ ( -us𝐵) ∈ No ) → (( -us𝐴) +s ( -us𝐵)) ∈ No )
2017, 18, 19syl2an 594 . . 3 ((𝐴 No 𝐵 No ) → (( -us𝐴) +s ( -us𝐵)) ∈ No )
2116, 20, 1addscan1d 27963 . 2 ((𝐴 No 𝐵 No ) → (((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us𝐴) +s ( -us𝐵))) ↔ ( -us ‘(𝐴 +s 𝐵)) = (( -us𝐴) +s ( -us𝐵))))
2215, 21mpbid 231 1 ((𝐴 No 𝐵 No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us𝐴) +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419   No csur 27618   0s c0s 27801   +s cadds 27922   -us cnegs 27978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-nadd 8687  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec 27901  df-norec2 27912  df-adds 27923  df-negs 27980
This theorem is referenced by:  negsubsdi2d  28036  subsubs4d  28050  renegscl  28298  readdscl  28299
  Copyright terms: Public domain W3C validator