![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsdi | Structured version Visualization version GIF version |
Description: Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
Ref | Expression |
---|---|
negsdi | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addscl 27944 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) ∈ No ) | |
2 | 1 | negsidd 28000 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = 0s ) |
3 | negsid 27999 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | |
4 | negsid 27999 | . . . . 5 ⊢ (𝐵 ∈ No → (𝐵 +s ( -us ‘𝐵)) = 0s ) | |
5 | 3, 4 | oveqan12d 7438 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵))) = ( 0s +s 0s )) |
6 | 0sno 27805 | . . . . 5 ⊢ 0s ∈ No | |
7 | addslid 27931 | . . . . 5 ⊢ ( 0s ∈ No → ( 0s +s 0s ) = 0s ) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ( 0s +s 0s ) = 0s |
9 | 5, 8 | eqtr2di 2782 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 0s = ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵)))) |
10 | simpl 481 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
11 | 10 | negscld 27995 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘𝐴) ∈ No ) |
12 | simpr 483 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
13 | 12 | negscld 27995 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
14 | 10, 11, 12, 13 | adds4d 27972 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
15 | 2, 9, 14 | 3eqtrd 2769 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
16 | 1 | negscld 27995 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) ∈ No ) |
17 | negscl 27994 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
18 | negscl 27994 | . . . 4 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
19 | addscl 27944 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ ( -us ‘𝐵) ∈ No ) → (( -us ‘𝐴) +s ( -us ‘𝐵)) ∈ No ) | |
20 | 17, 18, 19 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) +s ( -us ‘𝐵)) ∈ No ) |
21 | 16, 20, 1 | addscan1d 27963 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵))) ↔ ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
22 | 15, 21 | mpbid 231 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 No csur 27618 0s c0s 27801 +s cadds 27922 -us cnegs 27978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-2o 8488 df-nadd 8687 df-no 27621 df-slt 27622 df-bday 27623 df-sle 27724 df-sslt 27760 df-scut 27762 df-0s 27803 df-made 27820 df-old 27821 df-left 27823 df-right 27824 df-norec 27901 df-norec2 27912 df-adds 27923 df-negs 27980 |
This theorem is referenced by: negsubsdi2d 28036 subsubs4d 28050 renegscl 28298 readdscl 28299 |
Copyright terms: Public domain | W3C validator |