![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsdi | Structured version Visualization version GIF version |
Description: Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
Ref | Expression |
---|---|
negsdi | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addscl 27811 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) ∈ No ) | |
2 | 1 | negsidd 27867 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = 0s ) |
3 | negsid 27866 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | |
4 | negsid 27866 | . . . . 5 ⊢ (𝐵 ∈ No → (𝐵 +s ( -us ‘𝐵)) = 0s ) | |
5 | 3, 4 | oveqan12d 7431 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵))) = ( 0s +s 0s )) |
6 | 0sno 27672 | . . . . 5 ⊢ 0s ∈ No | |
7 | addslid 27798 | . . . . 5 ⊢ ( 0s ∈ No → ( 0s +s 0s ) = 0s ) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ( 0s +s 0s ) = 0s |
9 | 5, 8 | eqtr2di 2788 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 0s = ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵)))) |
10 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
11 | 10 | negscld 27862 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘𝐴) ∈ No ) |
12 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
13 | 12 | negscld 27862 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
14 | 10, 11, 12, 13 | adds4d 27839 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
15 | 2, 9, 14 | 3eqtrd 2775 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
16 | 1 | negscld 27862 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) ∈ No ) |
17 | negscl 27861 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
18 | negscl 27861 | . . . 4 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
19 | addscl 27811 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ ( -us ‘𝐵) ∈ No ) → (( -us ‘𝐴) +s ( -us ‘𝐵)) ∈ No ) | |
20 | 17, 18, 19 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) +s ( -us ‘𝐵)) ∈ No ) |
21 | 16, 20, 1 | addscan1d 27830 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵))) ↔ ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
22 | 15, 21 | mpbid 231 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 No csur 27486 0s c0s 27668 +s cadds 27789 -us cnegs 27845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-2o 8473 df-nadd 8671 df-no 27489 df-slt 27490 df-bday 27491 df-sle 27591 df-sslt 27627 df-scut 27629 df-0s 27670 df-made 27687 df-old 27688 df-left 27690 df-right 27691 df-norec 27768 df-norec2 27779 df-adds 27790 df-negs 27847 |
This theorem is referenced by: negsubsdi2d 27901 subsubs4d 27914 renegscl 28106 readdscl 28107 |
Copyright terms: Public domain | W3C validator |