| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsdi | Structured version Visualization version GIF version | ||
| Description: Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| negsdi | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscl 27919 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) ∈ No ) | |
| 2 | 1 | negsidd 27979 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = 0s ) |
| 3 | negsid 27978 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | |
| 4 | negsid 27978 | . . . . 5 ⊢ (𝐵 ∈ No → (𝐵 +s ( -us ‘𝐵)) = 0s ) | |
| 5 | 3, 4 | oveqan12d 7360 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵))) = ( 0s +s 0s )) |
| 6 | 0sno 27765 | . . . . 5 ⊢ 0s ∈ No | |
| 7 | addslid 27906 | . . . . 5 ⊢ ( 0s ∈ No → ( 0s +s 0s ) = 0s ) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ( 0s +s 0s ) = 0s |
| 9 | 5, 8 | eqtr2di 2783 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 0s = ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵)))) |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
| 11 | 10 | negscld 27974 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘𝐴) ∈ No ) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
| 13 | 12 | negscld 27974 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
| 14 | 10, 11, 12, 13 | adds4d 27947 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
| 15 | 2, 9, 14 | 3eqtrd 2770 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
| 16 | 1 | negscld 27974 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) ∈ No ) |
| 17 | negscl 27973 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
| 18 | negscl 27973 | . . . 4 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
| 19 | addscl 27919 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ ( -us ‘𝐵) ∈ No ) → (( -us ‘𝐴) +s ( -us ‘𝐵)) ∈ No ) | |
| 20 | 17, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) +s ( -us ‘𝐵)) ∈ No ) |
| 21 | 16, 20, 1 | addscan1d 27938 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵))) ↔ ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
| 22 | 15, 21 | mpbid 232 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 No csur 27573 0s c0s 27761 +s cadds 27897 -us cnegs 27956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-nadd 8576 df-no 27576 df-slt 27577 df-bday 27578 df-sle 27679 df-sslt 27716 df-scut 27718 df-0s 27763 df-made 27783 df-old 27784 df-left 27786 df-right 27787 df-norec 27876 df-norec2 27887 df-adds 27898 df-negs 27958 |
| This theorem is referenced by: negsubsdi2d 28015 subsubs4d 28029 zscut 28326 renegscl 28395 readdscl 28396 |
| Copyright terms: Public domain | W3C validator |