MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsdi Structured version   Visualization version   GIF version

Theorem negsdi 28100
Description: Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.)
Assertion
Ref Expression
negsdi ((𝐴 No 𝐵 No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us𝐴) +s ( -us𝐵)))

Proof of Theorem negsdi
StepHypRef Expression
1 addscl 28032 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) ∈ No )
21negsidd 28092 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = 0s )
3 negsid 28091 . . . . 5 (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )
4 negsid 28091 . . . . 5 (𝐵 No → (𝐵 +s ( -us𝐵)) = 0s )
53, 4oveqan12d 7467 . . . 4 ((𝐴 No 𝐵 No ) → ((𝐴 +s ( -us𝐴)) +s (𝐵 +s ( -us𝐵))) = ( 0s +s 0s ))
6 0sno 27889 . . . . 5 0s No
7 addslid 28019 . . . . 5 ( 0s No → ( 0s +s 0s ) = 0s )
86, 7ax-mp 5 . . . 4 ( 0s +s 0s ) = 0s
95, 8eqtr2di 2797 . . 3 ((𝐴 No 𝐵 No ) → 0s = ((𝐴 +s ( -us𝐴)) +s (𝐵 +s ( -us𝐵))))
10 simpl 482 . . . 4 ((𝐴 No 𝐵 No ) → 𝐴 No )
1110negscld 28087 . . . 4 ((𝐴 No 𝐵 No ) → ( -us𝐴) ∈ No )
12 simpr 484 . . . 4 ((𝐴 No 𝐵 No ) → 𝐵 No )
1312negscld 28087 . . . 4 ((𝐴 No 𝐵 No ) → ( -us𝐵) ∈ No )
1410, 11, 12, 13adds4d 28060 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 +s ( -us𝐴)) +s (𝐵 +s ( -us𝐵))) = ((𝐴 +s 𝐵) +s (( -us𝐴) +s ( -us𝐵))))
152, 9, 143eqtrd 2784 . 2 ((𝐴 No 𝐵 No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us𝐴) +s ( -us𝐵))))
161negscld 28087 . . 3 ((𝐴 No 𝐵 No ) → ( -us ‘(𝐴 +s 𝐵)) ∈ No )
17 negscl 28086 . . . 4 (𝐴 No → ( -us𝐴) ∈ No )
18 negscl 28086 . . . 4 (𝐵 No → ( -us𝐵) ∈ No )
19 addscl 28032 . . . 4 ((( -us𝐴) ∈ No ∧ ( -us𝐵) ∈ No ) → (( -us𝐴) +s ( -us𝐵)) ∈ No )
2017, 18, 19syl2an 595 . . 3 ((𝐴 No 𝐵 No ) → (( -us𝐴) +s ( -us𝐵)) ∈ No )
2116, 20, 1addscan1d 28051 . 2 ((𝐴 No 𝐵 No ) → (((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us𝐴) +s ( -us𝐵))) ↔ ( -us ‘(𝐴 +s 𝐵)) = (( -us𝐴) +s ( -us𝐵))))
2215, 21mpbid 232 1 ((𝐴 No 𝐵 No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us𝐴) +s ( -us𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448   No csur 27702   0s c0s 27885   +s cadds 28010   -us cnegs 28069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071
This theorem is referenced by:  negsubsdi2d  28128  subsubs4d  28142  zscut  28411  renegscl  28448  readdscl  28449
  Copyright terms: Public domain W3C validator