| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsdi | Structured version Visualization version GIF version | ||
| Description: Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| negsdi | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscl 27893 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) ∈ No ) | |
| 2 | 1 | negsidd 27953 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = 0s ) |
| 3 | negsid 27952 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | |
| 4 | negsid 27952 | . . . . 5 ⊢ (𝐵 ∈ No → (𝐵 +s ( -us ‘𝐵)) = 0s ) | |
| 5 | 3, 4 | oveqan12d 7368 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵))) = ( 0s +s 0s )) |
| 6 | 0sno 27740 | . . . . 5 ⊢ 0s ∈ No | |
| 7 | addslid 27880 | . . . . 5 ⊢ ( 0s ∈ No → ( 0s +s 0s ) = 0s ) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ( 0s +s 0s ) = 0s |
| 9 | 5, 8 | eqtr2di 2781 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 0s = ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵)))) |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
| 11 | 10 | negscld 27948 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘𝐴) ∈ No ) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
| 13 | 12 | negscld 27948 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘𝐵) ∈ No ) |
| 14 | 10, 11, 12, 13 | adds4d 27921 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s ( -us ‘𝐴)) +s (𝐵 +s ( -us ‘𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
| 15 | 2, 9, 14 | 3eqtrd 2768 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
| 16 | 1 | negscld 27948 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) ∈ No ) |
| 17 | negscl 27947 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
| 18 | negscl 27947 | . . . 4 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
| 19 | addscl 27893 | . . . 4 ⊢ ((( -us ‘𝐴) ∈ No ∧ ( -us ‘𝐵) ∈ No ) → (( -us ‘𝐴) +s ( -us ‘𝐵)) ∈ No ) | |
| 20 | 17, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) +s ( -us ‘𝐵)) ∈ No ) |
| 21 | 16, 20, 1 | addscan1d 27912 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((𝐴 +s 𝐵) +s ( -us ‘(𝐴 +s 𝐵))) = ((𝐴 +s 𝐵) +s (( -us ‘𝐴) +s ( -us ‘𝐵))) ↔ ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵)))) |
| 22 | 15, 21 | mpbid 232 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 No csur 27549 0s c0s 27736 +s cadds 27871 -us cnegs 27930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27738 df-made 27757 df-old 27758 df-left 27760 df-right 27761 df-norec 27850 df-norec2 27861 df-adds 27872 df-negs 27932 |
| This theorem is referenced by: negsubsdi2d 27989 subsubs4d 28003 zscut 28300 renegscl 28367 readdscl 28368 |
| Copyright terms: Public domain | W3C validator |